login
A300835
Restricted growth sequence transform of A300834, product_{d|n, d<n} A019565(A003714(d)); Filter sequence related to Zeckendorf-representations of proper divisors of n.
6
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 7, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 56, 57, 2, 58, 59, 60, 2, 61, 41, 62, 63, 64, 2, 65, 66, 67, 68, 69
OFFSET
1,2
COMMENTS
For all i, j: a(i) = a(j) => A001065(i) = A001065(j).
For all i, j: a(i) = a(j) => A300836(i) = A300836(j).
LINKS
EXAMPLE
For cases n=10 and 49, we see that 10 has proper divisors 1, 2 and 5 and these have Zeckendorf-representations (A014417) 1, 10 and 1000, while 49 has proper divisors 1 and 7 and these have Zeckendorf-representations 1 and 1010. When these Zeckendorf-representations are summed (columnwise without carries), result in both cases is 1011, thus a(10) = a(49).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
A003714(n) = { my(s=0, w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); }
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
A300834(n) = { my(m=1); fordiv(n, d, if(d < n, m *= A019565(A003714(d)))); m; };
write_to_bfile(1, rgs_transform(vector(up_to, n, A300834(n))), "b300835.txt");
CROSSREFS
Cf. also A293215, A293217, A293223, A293224, A293232, A300833 for similar filtering sequences.
Sequence in context: A329381 A293215 A293232 * A369051 A369046 A344025
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2018
STATUS
approved