login
A300035
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
5
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 37, 22, 37, 1, 1, 104, 81, 81, 104, 1, 1, 301, 307, 427, 307, 301, 1, 1, 864, 1201, 2338, 2338, 1201, 864, 1, 1, 2485, 5066, 13458, 21811, 13458, 5066, 2485, 1, 1, 7144, 21292, 84948, 204034, 204034, 84948, 21292, 7144, 1, 1, 20541
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1.......1.........1...........1............1..............1
.1....5....12......37.......104.........301..........864...........2485
.1...12....22......81.......307........1201.........5066..........21292
.1...37....81.....427......2338.......13458........84948.........543741
.1..104...307....2338.....21811......204034......2004660.......19807948
.1..301..1201...13458....204034.....3126013.....49405101......783633192
.1..864..5066...84948...2004660....49405101...1240303182....31113970216
.1.2485.21292..543741..19807948...783633192..31113970216..1230133478378
.1.7144.90443.3534493.196822255.12536955677.788871054393.49254153618728
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-2) +8*a(n-3) +4*a(n-4)
k=3: [order 19] for n>20
k=4: [order 66] for n>68
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..0. .0..0..0..0. .0..0..1..1. .0..0..1..0
..1..0..0..1. .0..0..1..1. .1..0..1..0. .0..1..1..0. .0..1..1..1
..1..1..1..1. .1..0..1..1. .1..1..0..1. .1..0..0..0. .1..1..0..0
..0..0..0..0. .1..1..0..0. .0..0..1..0. .0..1..1..0. .0..0..1..0
..1..0..0..1. .0..1..0..0. .1..0..0..0. .0..0..1..1. .1..0..1..1
CROSSREFS
Column 2 is A297909.
Column 3 is A299216.
Column 4 is A299217.
Sequence in context: A298508 A298328 A299221 * A130227 A114123 A324009
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 23 2018
STATUS
approved