login
A298328
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 37, 22, 37, 1, 1, 104, 78, 78, 104, 1, 1, 301, 283, 382, 283, 301, 1, 1, 864, 1097, 1998, 1998, 1097, 864, 1, 1, 2485, 4503, 11727, 17984, 11727, 4503, 2485, 1, 1, 7144, 18491, 73321, 170318, 170318, 73321, 18491, 7144, 1, 1, 20541
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1.......1.........1...........1............1..............1
.1....5....12......37.......104.........301..........864...........2485
.1...12....22......78.......283........1097.........4503..........18491
.1...37....78.....382......1998.......11727........73321.........464117
.1..104...283....1998.....17984......170318......1664958.......16189372
.1..301..1097...11727....170318.....2614097.....41029614......638898386
.1..864..4503...73321...1664958....41029614...1019874462....25083063173
.1.2485.18491..464117..16189372...638898386..25083063173...970377749534
.1.7144.77067.2989370.158726938.10052063678.624245464335.38070771240926
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-2) +8*a(n-3) +4*a(n-4)
k=3: [order 19] for n>20
k=4: [order 67] for n>68
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..0
..1..0..1..1. .0..1..0..1. .0..1..1..0. .0..1..0..0. .0..0..1..1
..0..0..1..0. .1..0..0..0. .1..1..0..0. .0..1..1..0. .0..1..1..0
..1..0..0..0. .0..1..1..1. .1..1..1..1. .0..0..1..1. .0..1..0..0
..1..1..0..0. .0..0..1..0. .1..0..1..0. .0..1..1..1. .0..0..0..1
CROSSREFS
Column 2 is A297909.
Sequence in context: A146987 A297915 A298508 * A299221 A300035 A130227
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 17 2018
STATUS
approved