login
A299221
T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 37, 22, 37, 1, 1, 104, 81, 81, 104, 1, 1, 301, 307, 427, 307, 301, 1, 1, 864, 1201, 2338, 2338, 1201, 864, 1, 1, 2485, 5066, 13458, 21730, 13458, 5066, 2485, 1, 1, 7144, 21292, 84948, 202841, 202841, 84948, 21292, 7144, 1, 1, 20541
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1.......1.........1...........1............1..............1
.1....5....12......37.......104.........301..........864...........2485
.1...12....22......81.......307........1201.........5066..........21292
.1...37....81.....427......2338.......13458........84948.........543741
.1..104...307....2338.....21730......202841......1992466.......19685956
.1..301..1201...13458....202841.....3096833.....48911434......775504649
.1..864..5066...84948...1992466....48911434...1226106440....30729398000
.1.2485.21292..543741..19685956...775504649..30729398000..1213390065190
.1.7144.90443.3534493.195564094.12397088059.778116037031.48505143319432
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1),
k=2: a(n) = 5*a(n-2) +8*a(n-3) +4*a(n-4),
k=3: [order 19] for n>20,
k=4: [order 66] for n>68.
EXAMPLE
Some solutions for n=5, k=4
..0..1..0..1. .0..0..1..0. .0..0..1..1. .0..0..0..0. .0..0..1..0
..1..1..0..0. .1..0..0..0. .0..1..1..0. .0..1..0..1. .0..0..1..1
..1..0..0..1. .0..0..0..1. .0..1..0..0. .1..1..1..1. .1..0..1..0
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1
..1..0..1..1. .0..1..0..0. .0..1..1..0. .1..0..0..1. .1..0..1..1
CROSSREFS
Column 2 is A297909.
Sequence in context: A297915 A298508 A298328 * A300035 A130227 A114123
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 05 2018
STATUS
approved