login
A299821
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 42, 39, 42, 1, 1, 127, 202, 202, 127, 1, 1, 389, 894, 2101, 894, 389, 1, 1, 1192, 4507, 18101, 18101, 4507, 1192, 1, 1, 3645, 22684, 176353, 302780, 176353, 22684, 3645, 1, 1, 11161, 116651, 1735393, 5678641, 5678641
OFFSET
1,5
COMMENTS
Table starts
.1.....1......1.........1...........1.............1................1
.1.....5.....13........42.........127...........389.............1192
.1....13.....39.......202.........894..........4507............22684
.1....42....202......2101.......18101........176353..........1735393
.1...127....894.....18101......302780.......5678641........107544794
.1...389...4507....176353.....5678641.....203062719.......7338573888
.1..1192..22684...1735393...107544794....7338573888.....506116118801
.1..3645.116651..17279857..2047783162..266405977942...35028322225854
.1.11161.605727.173340585.39237426288.9728685869763.2438361076801151
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +5*a(n-2) +4*a(n-3)
k=3: [order 14] for n>16
k=4: [order 38] for n>39
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..1
..1..1..1..1. .0..1..1..1. .0..0..1..0. .0..0..0..0. .0..0..1..1
..0..1..1..1. .0..0..0..0. .0..1..1..1. .0..0..0..0. .1..0..0..0
..1..1..0..0. .0..0..0..0. .1..1..1..1. .1..1..1..0. .0..0..0..0
..1..0..0..1. .0..0..0..0. .0..1..1..1. .1..0..1..1. .1..0..0..0
CROSSREFS
Column 2 is A298234.
Sequence in context: A299135 A299893 A299060 * A299721 A300342 A119725
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 19 2018
STATUS
approved