login
A300342
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 42, 47, 42, 1, 1, 127, 255, 255, 127, 1, 1, 389, 1272, 2648, 1272, 389, 1, 1, 1192, 6780, 25327, 25327, 6780, 1192, 1, 1, 3645, 36498, 258608, 476507, 258608, 36498, 3645, 1, 1, 11161, 198531, 2697270, 9482056, 9482056
OFFSET
1,5
COMMENTS
Table starts
.1.....1.......1.........1...........1..............1................1
.1.....5......13........42.........127............389.............1192
.1....13......47.......255........1272...........6780............36498
.1....42.....255......2648.......25327.........258608..........2697270
.1...127....1272.....25327......476507........9482056........193080853
.1...389....6780....258608.....9482056......366298010......14485201471
.1..1192...36498...2697270...193080853....14485201471....1111703589144
.1..3645..198531..28350215..3949300187...574690828973...85529683934894
.1.11161.1088200.300252749.81288738492.22936158924074.6617480992614301
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +5*a(n-2) +4*a(n-3)
k=3: [order 11] for n>13
k=4: [order 25] for n>26
k=5: [order 66] for n>69
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..1..0..1. .0..0..1..1. .0..1..0..0. .0..0..1..0
..0..0..1..0. .0..0..0..0. .1..0..1..0. .0..0..0..0. .0..0..1..1
..0..1..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..0. .0..1..1..1
..1..1..0..0. .1..1..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1
..0..1..0..0. .1..0..0..1. .1..0..0..0. .0..0..1..0. .0..0..0..0
CROSSREFS
Column 2 is A298234.
Sequence in context: A299060 A299821 A299721 * A119725 A239279 A278880
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 03 2018
STATUS
approved