login
A299893
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 42, 31, 42, 1, 1, 127, 156, 156, 127, 1, 1, 389, 614, 1308, 614, 389, 1, 1, 1192, 2800, 9682, 9682, 2800, 1192, 1, 1, 3645, 13379, 77981, 135586, 77981, 13379, 3645, 1, 1, 11161, 63697, 667784, 2025352, 2025352, 667784, 63697
OFFSET
1,5
COMMENTS
Table starts
.1.....1......1........1..........1.............1...............1
.1.....5.....13.......42........127...........389............1192
.1....13.....31......156........614..........2800...........13379
.1....42....156.....1308.......9682.........77981..........667784
.1...127....614.....9682.....135586.......2025352........32244900
.1...389...2800....77981....2025352......55414033......1611352289
.1..1192..13379...667784...32244900....1611352289.....85265831295
.1..3645..63697..5725192..510265485...46538050960...4488446180581
.1.11161.313055.49894988.8185592982.1360698390084.238899914350593
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +5*a(n-2) +4*a(n-3)
k=3: [order 13] for n>15
k=4: [order 49] for n>51
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..0..1..0. .0..1..1..1. .0..0..0..0. .0..0..0..0
..1..1..0..1. .1..0..1..1. .0..0..1..1. .0..1..0..0. .0..1..0..0
..0..0..1..1. .0..0..1..0. .1..0..0..1. .1..1..1..0. .0..1..1..0
..0..0..0..0. .1..1..0..0. .0..0..1..1. .0..1..0..0. .0..0..0..0
..1..0..1..0. .1..1..1..0. .0..1..1..0. .0..0..0..1. .1..0..0..1
CROSSREFS
Column 2 is A298234.
Sequence in context: A298240 A299366 A299135 * A299060 A299821 A299721
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 21 2018
STATUS
approved