login
A298834
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 0, 4, 0, 1, 4, 4, 1, 0, 16, 1, 16, 0, 1, 48, 6, 6, 48, 1, 0, 88, 10, 68, 10, 88, 0, 1, 240, 15, 141, 141, 15, 240, 1, 0, 704, 60, 489, 1590, 489, 60, 704, 0, 1, 1600, 128, 2774, 3282, 3282, 2774, 128, 1600, 1, 0, 4032, 267, 9849, 27915, 16551, 27915, 9849, 267, 4032, 0
OFFSET
1,5
COMMENTS
Table starts
.0....1...0.....1.......0........1.........0...........1.............0
.1....4...4....16......48.......88.......240.........704..........1600
.0....4...1.....6......10.......15........60.........128...........267
.1...16...6....68.....141......489......2774........9849.........39101
.0...48..10...141....1590.....3282.....27915......246700.......1055145
.1...88..15...489....3282....16551....226883.....1917869......16022685
.0..240..60..2774...27915...226883...5097700....70784399.....995832826
.1..704.128..9849..246700..1917869..70784399..2031564141...35098724239
.0.1600.267.39101.1055145.16022685.995832826.35098724239.1185589525594
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5)
k=3: [order 19] for n>20
k=4: [order 63] for n>65
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..0. .0..0..1..1. .0..1..0..1. .0..0..1..0
..0..0..0..1. .1..1..0..0. .0..0..0..0. .0..1..0..1. .0..0..0..1
..1..1..1..1. .1..1..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1
..0..0..1..0. .0..1..0..0. .1..1..1..1. .1..0..1..0. .0..0..1..1
..0..0..1..0. .0..1..0..0. .1..1..1..1. .1..0..1..0. .0..0..0..0
CROSSREFS
Column 2 is A298448.
Sequence in context: A217476 A298622 A298454 * A299588 A299528 A300146
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 27 2018
STATUS
approved