This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217476 Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672. 5
 4, 0, 1, 4, -4, 1, 0, 9, -6, 1, 4, -16, 20, -8, 1, 0, 25, -50, 35, -10, 1, 4, -36, 105, -112, 54, -12, 1, 0, 49, -196, 294, -210, 77, -14, 1, 4, -64, 336, -672, 660, -352, 104, -16, 1, 0, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 4, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The monic integer T-polynomials, called R(n,x) (in Abramowitz-Stegun C(n,x)), with their coefficient triangle given in A127672, when squared, become polynomials in y=x^2:   R(n,x)^2 = sum(T(n,k)*y^k,m=0..n). R(n,x)^2 = 2 + R(2*n,x). From the bisection of the R-(or T-)polynomials, the even part. Directly from the R(m*n,x)=R(m,R(n,x)) property for m=2. The o.g.f. is G(z,y) := sum((R(n,sqrt(y))^2)*z^n ,n=0..infinity) = (4 + (4 - 3*y)*z + y*z^2)/((1 +(2-y)*z + z^2)*(1-z)). From the bisection. The o.g.f.s of the columns k>=1 are x^k*(1-x)/(1+x)^(2*k+1), and for k=0 the o.g.f. is 4/(1-x^2). Hetmaniok et al. (2015) refer to these as "modified Chebyshev" polynomials. - N. J. A. Sloane, Sep 13 2016 REFERENCES E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343. LINKS FORMULA T(n,k) = [x^(2*k)]R(n,x)^2, with R(n,x) the monic integer version of the Chebyshev T(n,x) polynomial. T(n,k) = 0 if n=1. ([k=0] means 1 if k=0 else 0). EXAMPLE The triangle begins: n\k 0    1    2      3     4      5     6     7    8   9  10 0:  4 1:  0    1 2:  4   -4    1 3:  0    9   -6      1 4:  4  -16   20     -8     1 5:  0   25  -50     35   -10      1 6:  4  -36  105   -112    54    -12     1 7:  0   49 -196    294  -210     77   -14     1 8:  4  -64  336   -672   660   -352   104   -16    1 9:  0   81 -540   1386 -1782   1287  -546   135  -18   1 10: 4 -100  825  -2640  4290  -4004  2275  -800  170 -20   1 ... n=2:  R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2. n=3:  R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2. T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16. T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4. T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1. T(n,2) = (-1)^n*A002415(n), n >= 0. T(n,3) = -(-1)^n*A040977(n-3), n >= 3. T(n,4) = (-1)^n*A053347(n-4), n >= 4. T(n,5) = -(-1)^n*A054334(n-5), n >= 5. CROSSREFS Cf. A127672, A158454 (square of S-polynomials), A128495 (sum of square of S-polynomials). Sequence in context: A124321 A232195 A298924 * A298622 A298454 A298834 Adjacent sequences:  A217473 A217474 A217475 * A217477 A217478 A217479 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Oct 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 09:35 EST 2019. Contains 319306 sequences. (Running on oeis4.)