login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217476 Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672. 5
4, 0, 1, 4, -4, 1, 0, 9, -6, 1, 4, -16, 20, -8, 1, 0, 25, -50, 35, -10, 1, 4, -36, 105, -112, 54, -12, 1, 0, 49, -196, 294, -210, 77, -14, 1, 4, -64, 336, -672, 660, -352, 104, -16, 1, 0, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 4, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The monic integer T-polynomials, called R(n,x) (in Abramowitz-Stegun C(n,x)), with their coefficient triangle given in A127672, when squared, become polynomials in y=x^2:

  R(n,x)^2 = sum(T(n,k)*y^k,m=0..n).

R(n,x)^2 = 2 + R(2*n,x). From the bisection of the R-(or T-)polynomials, the even part. Directly from the R(m*n,x)=R(m,R(n,x)) property for m=2.

The o.g.f. is G(z,y) := sum((R(n,sqrt(y))^2)*z^n ,n=0..infinity) = (4 + (4 - 3*y)*z + y*z^2)/((1 +(2-y)*z + z^2)*(1-z)). From the bisection.

The o.g.f.s of the columns k>=1 are x^k*(1-x)/(1+x)^(2*k+1),

and for k=0 the o.g.f. is 4/(1-x^2).

Hetmaniok et al. (2015) refer to these as "modified Chebyshev" polynomials. - N. J. A. Sloane, Sep 13 2016

REFERENCES

E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.

LINKS

Table of n, a(n) for n=0..65.

FORMULA

T(n,k) = [x^(2*k)]R(n,x)^2, with R(n,x) the monic integer version of the Chebyshev T(n,x) polynomial.

T(n,k) = 0 if n<k, T(0,0) = 4, T(n,k) = 2*[k=0] + 2*n*(-1)^(n-k)*binomial(n+k,n-k)/(n+k), n>=1. ([k=0] means 1 if k=0 else 0).

EXAMPLE

The triangle begins:

n\k 0    1    2      3     4      5     6     7    8   9  10

0:  4

1:  0    1

2:  4   -4    1

3:  0    9   -6      1

4:  4  -16   20     -8     1

5:  0   25  -50     35   -10      1

6:  4  -36  105   -112    54    -12     1

7:  0   49 -196    294  -210     77   -14     1

8:  4  -64  336   -672   660   -352   104   -16    1

9:  0   81 -540   1386 -1782   1287  -546   135  -18   1

10: 4 -100  825  -2640  4290  -4004  2275  -800  170 -20   1

...

n=2:  R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2.

n=3:  R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2.

T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16.

T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4.

T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1.

T(n,2) = (-1)^n*A002415(n), n >= 0.

T(n,3) = -(-1)^n*A040977(n-3), n >= 3.

T(n,4) = (-1)^n*A053347(n-4), n >= 4.

T(n,5) = -(-1)^n*A054334(n-5), n >= 5.

CROSSREFS

Cf. A127672, A158454 (square of S-polynomials), A128495 (sum of square of S-polynomials).

Sequence in context: A124321 A232195 A298924 * A298622 A298454 A298834

Adjacent sequences:  A217473 A217474 A217475 * A217477 A217478 A217479

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang, Oct 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 14:22 EST 2018. Contains 299333 sequences. (Running on oeis4.)