login
A298454
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
8
0, 1, 1, 0, 4, 0, 1, 4, 4, 1, 0, 16, 0, 16, 0, 1, 48, 11, 11, 48, 1, 0, 88, 26, 161, 26, 88, 0, 1, 240, 46, 478, 478, 46, 240, 1, 0, 704, 204, 2459, 5938, 2459, 204, 704, 0, 1, 1600, 696, 15248, 22133, 22133, 15248, 696, 1600, 1, 0, 4032, 1493, 78163, 206239, 255029
OFFSET
1,5
COMMENTS
Table starts
.0....1....0......1........0.........1...........0.............1
.1....4....4.....16.......48........88.........240...........704
.0....4....0.....11.......26........46.........204...........696
.1...16...11....161......478......2459.......15248.........78163
.0...48...26....478.....5938.....22133......206239.......2539477
.1...88...46...2459....22133....255029.....4095727......62979342
.0..240..204..15248...206239...4095727...112275165....2871621220
.1..704..696..78163..2539477..62979342..2871621220..141892377970
.0.1600.1493.390424.16116493.804773211.62756244756.4903035588074
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-2)
k=2: a(n) = 2*a(n-1) +8*a(n-3) -8*a(n-4) -8*a(n-5)
k=3: [order 17] for n>18
k=4: [order 53] for n>56
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..1..1. .0..0..0..0. .0..1..1..0. .0..0..1..1
..1..0..1..1. .1..1..1..1. .1..1..0..0. .0..1..1..0. .0..0..1..1
..0..0..0..1. .1..1..0..0. .1..1..1..1. .0..0..1..1. .1..1..1..1
..0..0..1..1. .1..1..0..0. .0..1..0..0. .0..0..0..1. .0..0..1..1
..1..1..1..1. .1..1..0..0. .0..1..0..0. .0..0..1..0. .0..0..0..0
CROSSREFS
Sequence in context: A298924 A217476 A298622 * A298834 A299588 A299528
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 19 2018
STATUS
approved