login
A297915
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3 or 4 king-move adjacent elements, with upper left element zero.
8
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 37, 10, 37, 1, 1, 104, 49, 49, 104, 1, 1, 301, 144, 268, 144, 301, 1, 1, 864, 481, 1281, 1281, 481, 864, 1, 1, 2485, 2016, 6044, 10809, 6044, 2016, 2485, 1, 1, 7144, 7730, 35788, 86201, 86201, 35788, 7730, 7144, 1, 1, 20541, 30637
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1.......1........1..........1............1.............1
.1....5....12......37......104........301..........864..........2485
.1...12....10......49......144........481.........2016..........7730
.1...37....49.....268.....1281.......6044........35788........202419
.1..104...144....1281....10809......86201.......789026.......6952444
.1..301...481....6044....86201....1084333.....15983426.....223362153
.1..864..2016...35788...789026...15983426....362523451....7903384843
.1.2485..7730..202419..6952444..223362153...7903384843..267640924872
.1.7144.30637.1185261.62368324.3195010015.176308045666.9307023743602
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-2) +8*a(n-3) +4*a(n-4)
k=3: [order 13] for n>15
k=4: [order 50] for n>53
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..1. .0..0..1..0. .0..1..1..1. .0..1..1..0
..1..0..1..1. .0..0..0..1. .0..1..1..1. .1..1..0..1. .0..0..1..1
..1..1..0..0. .1..1..1..0. .1..0..0..1. .1..0..0..0. .0..1..0..0
..1..0..0..1. .0..1..0..1. .1..1..0..0. .0..0..1..1. .0..0..1..0
..1..1..1..1. .0..0..1..1. .0..1..1..0. .1..0..1..1. .1..0..1..1
CROSSREFS
Sequence in context: A174861 A110522 A146987 * A298508 A298328 A299221
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 08 2018
STATUS
approved