login
A297662
Number of chordless cycles in the complete tripartite graph K_{n,n,n}.
0
0, 3, 27, 108, 300, 675, 1323, 2352, 3888, 6075, 9075, 13068, 18252, 24843, 33075, 43200, 55488, 70227, 87723, 108300, 132300, 160083, 192027, 228528, 270000, 316875, 369603, 428652, 494508, 567675, 648675, 738048, 836352, 944163, 1062075, 1190700
OFFSET
1,2
COMMENTS
The only chordless cycles in a complete tripartite graph are cycles of length 4 confined to two of the partitions. - Andrew Howroyd, Jan 03 2018
LINKS
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
FORMULA
a(n) = 3*n^2*(n-1)^2/4 = 3*A000537(n). - Andrew Howroyd, Jan 03 2018
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -3*x^2*(1 + 4*x + x^2)/(-1 + x)^5.
MATHEMATICA
Table[3 Binomial[n, 2]^2, {n, 20}]
3 Binomial[Range[20], 2]^2
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 27, 108, 300}, 20]
SeriesCoefficient[Series[-3 x (1 + 4 x + x^2)/(-1 + x)^5, {x, 0, 20}], x]
PROG
(PARI) a(n) = 3*n^2*(n-1)^2/4; \\ Andrew Howroyd, Jan 03 2018
CROSSREFS
Sequence in context: A303407 A173491 A195799 * A127210 A161807 A261716
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jan 02 2018
EXTENSIONS
a(6)-a(36) from Andrew Howroyd, Jan 03 2018
STATUS
approved