login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296172 E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3) for n>=1. 6
1, 1, -5, -197, -65111, -62390159, -125012786669, -447082993406405, -2583111044504384687, -22511408975342644804991, -281350305428215911326408789, -4850582201056517165575319399909, -111834955668396093904661955538037255, -3361788412998032560821833199260880942287, -128987969989211586699135087535153035663946301, -6203990036027464835833031041177436339788197962789 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare e.g.f. to: [x^(n-1)] exp(x)^n = [x^n] exp(x)^n for n>=1.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..180

FORMULA

The logarithm of the e.g.f. A(x) is an integer series:

_ log(A(x)) = Sum_{n>=1} A296173(n) * x^n.

E.g.f. A(x) satisfies:

_ 1/n! * d^n/dx^n A(x)^(n^3) = 1/(n-1)! * d^(n-1)/dx^(n-1) A(x)^(n^3) for n>=1, when evaluated at x = 0.

a(n) ~ -sqrt(1-c) * 3^(3*n - 3) * n^(3*n - 3) / (c^n * (3-c)^(2*n - 3) * exp(3*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 13 2020

EXAMPLE

E.g.f.: A(x) = 1 + x - 5*x^2/2! - 197*x^3/3! - 65111*x^4/4! - 62390159*x^5/5! - 125012786669*x^6/6! - 447082993406405*x^7/7! - 2583111044504384687*x^8/8! - 22511408975342644804991*x^9/9! - 281350305428215911326408789*x^10/10! - 4850582201056517165575319399909*x^11/11! - 111834955668396093904661955538037255*x^12/12! +...

To illustrate [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3), form a table of coefficients of x^k in A(x)^(n^3) that begins as

n=1: [(1), (1), -5/2, -197/6, -65111/24, -62390159/120, -125012786669/720, ...];

n=2: [1, (8), (8), -1040/3, -71152/3, -64676744/15, -63817770776/45, ...];

n=3: [1, 27, (567/2), (567/2), -787941/8, -648507951/40, -405807483249/80, ...];

n=4: [1, 64, 1856, (88448/3), (88448/3), -689015872/15, -611019817664/45, ...];

n=5: [1, 125, 14875/2, 1649375/6, (156207625/24), (156207625/24), ...];

n=6: [1, 216, 22680, 1533168, 73812816, (12455715384/5), (12455715384/5), ...];

n=7: [1, 343, 115591/2, 38174185/6, 12294445009/24, 3808296195823/120, (1051338418817239/720), (1051338418817239/720), ...];

...

in which the diagonals indicated by parenthesis are equal.

Dividing the coefficients of x^(n-1)/(n-1)! in A(x)^(n^3) by n^3, we obtain the following sequence:

[1, 1, 21, 2764, 1249661, 1383968376, 3065126585473, 11913154589356672, 74286423963211939641, 696469981042645688972800, ...].

LOGARITHMIC PROPERTY.

Amazingly, the logarithm of the e.g.f. A(x) is an integer series:

log(A(x)) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 - 539638027429765922735002220880*x^13 - 1479049138515818646669055218090480*x^14 - 4742815067612592169849894663392228480*x^15 +...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); n!*A[n+1]}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A296173, A296170, A296174, A296176.

Sequence in context: A240772 A142927 A114351 * A080927 A211250 A208462

Adjacent sequences:  A296169 A296170 A296171 * A296173 A296174 A296175

KEYWORD

sign

AUTHOR

Paul D. Hanna, Dec 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 11:58 EST 2020. Contains 338900 sequences. (Running on oeis4.)