login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A296173 G.f. equals the logarithm of the e.g.f. of A296172. 6
1, -3, -30, -2686, -517311, -173118807, -88535206152, -63977172334344, -61971659588102940, -77470793599569049440, -121439997599825393413344, -233353875172602479932391040, -539638027429765922735002220880, -1479049138515818646669055218090480, -4742815067612592169849894663392228480, -17597031102801426396121130730318359114880, -74817150772352720408567833273371047298417408 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

E.g.f. G(x) of A296172 satisfies: [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..180

FORMULA

a(n) ~ -sqrt(1-c) * 3^(3*n - 3) * n^(2*n - 7/2) / (sqrt(2*Pi) * c^n * (3-c)^(2*n - 3) * exp(2*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - Vaclav Kotesovec, Oct 13 2020

EXAMPLE

G.f. A(x) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 - 539638027429765922735002220880*x^13 - 1479049138515818646669055218090480*x^14 - 4742815067612592169849894663392228480*x^15 +...

such that

G(x) = exp(A(x)) = 1 + x - 5*x^2/2! - 197*x^3/3! - 65111*x^4/4! - 62390159*x^5/5! - 125012786669*x^6/6! - 447082993406405*x^7/7! - 2583111044504384687*x^8/8! - 22511408975342644804991*x^9/9! - 281350305428215911326408789*x^10/10! - 4850582201056517165575319399909*x^11/11! - 111834955668396093904661955538037255*x^12/12! +...

satisfies [x^(n-1)] G(x)^(n^3) = [x^n] G(x)^(n^3) for n>=1.

Series_Reversion(A(x)) = x + 3*x^2 + 48*x^3 + 3271*x^4 + 575163*x^5 + 185377116*x^6 + 93039467356*x^7 + 66505075585875*x^8 + 63970743282062646*x^9 + 79580632411431634441*x^10 + 124299284968805234137968*x^11 + 238188439678208173206500760*x^12 +...+ A295813(n)*x^n +...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); polcoeff(log(Ser(A)), n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A296172, A295813, A296171, A296175, A296177.

Sequence in context: A323819 A308228 A208789 * A248728 A115040 A296409

Adjacent sequences:  A296170 A296171 A296172 * A296174 A296175 A296176

KEYWORD

sign

AUTHOR

Paul D. Hanna, Dec 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 12:24 EST 2020. Contains 338903 sequences. (Running on oeis4.)