login
A296169
E.g.f. A(x) satisfies: A(x) = 1+x - cos(2*A(x) - x).
1
1, 1, 6, 59, 810, 14281, 307566, 7825859, 229715130, 7640988961, 284037675966, 11669182625099, 525040651527210, 25676859334384441, 1356133254350401806, 76928506160117877779, 4664746297141400237850, 301102611588796277314321, 20613405033136513233790686, 1491812049486032067219356699, 113798761459974922574012320650
OFFSET
1,3
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = 1+x - cos(2*A(x) - x).
(2) A(x) = x + 2*sin(A(x) - x/2)^2.
(3) A(x) = x/2 + Series_Reversion( 2*x + 2*cos(2*x) - 2 ).
(4) A(x) = x/2 + Series_Reversion( 2*x - 4*sin(x)^2 ).
a(n) ~ 2^(n - 3/2) * 3^(n - 3/4) * n^(n-1) / ((Pi + 6*sqrt(3) - 12)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Oct 04 2020
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 6*x^3/3! + 59*x^4/4! + 810*x^5/5! + 14281*x^6/6! + 307566*x^7/7! + 7825859*x^8/8! + 229715130*x^9/9! + 7640988961*x^10/10! + ...
such that A(x) = 1+x - cos(2*A(x) - x).
MATHEMATICA
terms = 21; A[_] = 0; Do[A[x_] = 1 + x - Cos[2*A[x] - x] + O[x]^(terms+1) // Normal, {terms+1}]; CoefficientList[A[x], x]*Range[0, terms]! // Rest (* Jean-François Alcover, Feb 05 2018 *)
PROG
(PARI) {a(n) = my(A = x/2 + serreverse(2*x - 4*sin(x +x*O(x^n))^2) ); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A114501 A369513 A256035 * A089153 A075136 A024382
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2018
STATUS
approved