login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295166
Chromatic invariant of the n-cocktail party graph.
1
2, 1, 11, 362, 21234, 1965624, 264398280, 48773612880, 11824686110160, 3646938237505920, 1394586705296776320, 647624841502298284800, 359025601255648673068800, 234214938700483636606233600, 177617896085186117264114611200, 154944426571409730022474894387200
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Chromatic Invariant
Eric Weisstein's World of Mathematics, Cocktail Party Graph
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)*(-1)^(n+k)*(n+k-2)! for n > 1. - Andrew Howroyd, Apr 22 2018
MATHEMATICA
Join[{2}, Table[Sum[Binomial[n, k] (-1)^(k + n) (n + k - 2)!, {k, 0, n}], {n, 2, 20}]] (* Eric W. Weisstein, Apr 23 2018 *)
seq = Join[{2}, Table[-Gamma[n - 1] HypergeometricU[n - 1, 2 n, -1], {n, 2, 20}]] (* Eric W. Weisstein, Apr 23 2018 *)
PROG
(PARI) a(n)={if(n<2, [2][n], sum(k=0, n, binomial(n, k)*(-1)^(n+k)*(n+k-2)!))} \\ Andrew Howroyd, Apr 22 2018
CROSSREFS
Sequence in context: A322513 A082272 A107049 * A345050 A285649 A074956
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Nov 16 2017
EXTENSIONS
a(16) from Andrew Howroyd, Apr 22 2018
STATUS
approved