login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107049 Numerators of coefficients that satisfy: 3^n = Sum_{k=0..n} c(k)*x^k for n>=0, where c(k) = a(k)/A107050(k). 11
1, 2, 1, 11, 101, 71723, 1462111, 194269981673, 224103520039487, 14876670160046176873, 20871062802926443547323, 606768727432357137728440774281877, 97827345788163051844748893917483101 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum_{k>=0} a(k)/A107050(k) = 4.5568226185870666883519278484116281050682807568451524897...

LINKS

Table of n, a(n) for n=0..12.

FORMULA

a(n)/A107050(n) = Sum_{k=0..n} T(n, k)*3^k where T(n, k) = A107045(n, k)/A107046(n, k) = [A079901^-1](n, k) (matrix inverse of A079901).

EXAMPLE

3^0 = 1;

3^1 = 1 + (2)*1;

3^2 = 1 + (2)*2 + (1)*2^2;

3^3 = 1 + (2)*3 + (1)*3^2 + (11/27)*3^3;

3^4 = 1 + (2)*4 + (1)*4^2 + (11/27)*4^3 + (101/864)*4^4.

Initial coefficients are:

A107049/A107050 = {1, 2, 1, 11/27, 101/864, 71723/2700000,

1462111/291600000, 194269981673/240145138800000,

224103520039487/1967268977049600000, ...}.

PROG

(PARI) {a(n)=numerator(sum(k=0, n, 3^k*(matrix(n+1, n+1, r, c, if(r>=c, (r-1)^(c-1)))^-1)[n+1, k+1]))}

CROSSREFS

Cf. A107045/A107046, A107047/A107048 (y=2), A107051/A107052 (y=4), A107053/A107054 (y=5).

Sequence in context: A012900 A009288 A082272 * A074956 A176088 A069566

Adjacent sequences:  A107046 A107047 A107048 * A107050 A107051 A107052

KEYWORD

nonn,frac

AUTHOR

Paul D. Hanna, May 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 06:30 EST 2016. Contains 278749 sequences.