This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107049 Numerators of coefficients that satisfy: 3^n = Sum_{k=0..n} c(k)*x^k for n>=0, where c(k) = a(k)/A107050(k). 11
 1, 2, 1, 11, 101, 71723, 1462111, 194269981673, 224103520039487, 14876670160046176873, 20871062802926443547323, 606768727432357137728440774281877, 97827345788163051844748893917483101 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sum_{k>=0} a(k)/A107050(k) = 4.5568226185870666883519278484116281050682807568451524897... LINKS FORMULA a(n)/A107050(n) = Sum_{k=0..n} T(n, k)*3^k where T(n, k) = A107045(n, k)/A107046(n, k) = [A079901^-1](n, k) (matrix inverse of A079901). EXAMPLE 3^0 = 1; 3^1 = 1 + (2)*1; 3^2 = 1 + (2)*2 + (1)*2^2; 3^3 = 1 + (2)*3 + (1)*3^2 + (11/27)*3^3; 3^4 = 1 + (2)*4 + (1)*4^2 + (11/27)*4^3 + (101/864)*4^4. Initial coefficients are: A107049/A107050 = {1, 2, 1, 11/27, 101/864, 71723/2700000, 1462111/291600000, 194269981673/240145138800000, 224103520039487/1967268977049600000, ...}. PROG (PARI) {a(n)=numerator(sum(k=0, n, 3^k*(matrix(n+1, n+1, r, c, if(r>=c, (r-1)^(c-1)))^-1)[n+1, k+1]))} CROSSREFS Cf. A107045/A107046, A107047/A107048 (y=2), A107051/A107052 (y=4), A107053/A107054 (y=5). Sequence in context: A012900 A009288 A082272 * A285649 A074956 A176088 Adjacent sequences:  A107046 A107047 A107048 * A107050 A107051 A107052 KEYWORD nonn,frac AUTHOR Paul D. Hanna, May 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.