login
A295167
Expansion of Product_{k>0} 1/(1 + k^k*x^k)^(1/k).
1
1, -1, -1, -8, -50, -557, -6949, -108928, -1957445, -40752118, -952411952, -24868752445, -715354102054, -22517233371562, -769323660770868, -28367650033120436, -1122665826004076403, -47470796466768154403, -2135792162866000922808
OFFSET
0,4
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/n, g(n) = -n^n.
LINKS
FORMULA
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^n*(-1)^(n/d).
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k^k*x^k)^(1/k)))
CROSSREFS
Cf. A186633.
Sequence in context: A238841 A100310 A124963 * A195231 A162236 A215874
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 16 2017
STATUS
approved