login
A293958
Smallest odd prime divisor of (2n+1)^2 + 1.
2
5, 13, 5, 41, 61, 5, 113, 5, 181, 13, 5, 313, 5, 421, 13, 5, 613, 5, 761, 29, 5, 1013, 5, 1201, 1301, 5, 17, 5, 1741, 1861, 5, 2113, 5, 2381, 2521, 5, 29, 5, 3121, 17, 5, 3613, 5, 17, 41, 5, 4513, 5, 13, 5101, 5, 37, 5, 13, 61, 5, 17, 5, 73, 7321, 5, 13, 5, 53, 8581, 5, 13, 5, 9661, 9941, 5
OFFSET
1,1
COMMENTS
If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017
A027862 is a subsequence. - David A. Corneth, Nov 04 2017
LINKS
FORMULA
a(n) = A078701(A069894(n)). - Michel Marcus, Nov 04 2017
MATHEMATICA
sod[n_]:=With[{fi=FactorInteger[n]}, If[fi[[1, 1]]==2, fi[[2, 1]], fi[1, 1]]]; sod/@(Range[3, 151, 2]^2+1) (* Harvey P. Dale, Dec 23 2023 *)
PROG
(PARI) a(n) = factor((2*n+1)^2 + 1)[2, 1]; \\ Michel Marcus, Nov 04 2017
CROSSREFS
A bisection of A125256. Cf. A027862, A069894, A078701, A256970.
Sequence in context: A246922 A246921 A170864 * A089619 A337513 A094473
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 04 2017, following a suggestion from Zoran Sunic.
STATUS
approved