login
A293959
Construct a triangle T(n,k) (0 <= k <= n) of strings of integers, where T(0,0) = {0}, T(n,n) = {n}, and otherwise T(n,k) is the concatenation of T(n-1,k-1) and T(n-1,k). The sequence is obtained by reading across the rows of the triangle, concatenating the successive strings.
1
0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4
OFFSET
0,7
COMMENTS
The string T(n,k) contains binomial(n,k) numbers.
EXAMPLE
The first few rows of the triangle (where the strings T(n,k) are shown without spaces for legibility) are:
0,
0,1,
0,01,2,
0,001,012,3,
0,0001,001012,0123,4,
0,00001,0001001012,0010120123,01234,5,
...
CROSSREFS
Subtracting 1 from each term gives A265754.
Cf. A007318.
Sequence in context: A319195 A003475 A248639 * A333146 A135767 A208575
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Nov 05 2017
STATUS
approved