This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293643 a(n) is the least integer k such that k/Fibonacci(n) > 3/5. 3
 0, 1, 1, 2, 2, 3, 5, 8, 13, 21, 33, 54, 87, 140, 227, 366, 593, 959, 1551, 2509, 4059, 6568, 10627, 17195, 27821, 45015, 72836, 117851, 190687, 308538, 499224, 807762, 1306986, 2114747, 3421733, 5536479, 8958212, 14494691, 23452902, 37947592, 61400493 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 2, 1, -3, -1, 3, 0, -2, 1, 2, -1, -1) FORMULA G.f.: -((x (-1 + x^2 + x^3 - x^8 + x^12 + x^13))/((-1 + x) (-1 + x +     x^2) (1 + x + x^2 + x^3 + x^4) (1 - x^2 + x^4 - x^6 + x^8))). a(n) = a(n-1) + 2 a(n-2) - a(n-3) - 2 a(n-4) + 2 a(n-5) + a(n-6) - 3 a(n-7) - a(n-8) + 3 a(n-9) - 2 a(n-11) + a(n-12) + 2 a(n-13) - a(n-14) - a(n-15) for n >= 16. a(n) = ceiling(3*Fibonacci(n)/5). a(n) = A293642(n) + 1 for n > 0. MATHEMATICA z = 120; r = 3/5; f[n_] := Fibonacci[n]; Table[Floor[r*f[n]], {n, 0, z}];   (* A293642 *) Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293643 *) Table[Round[r*f[n]], {n, 0, z}];   (* A293644 *) CROSSREFS Cf. A000045, A293642, A293644. Sequence in context: A243853 A293419 A277218 * A022863 A236393 A039822 Adjacent sequences:  A293640 A293641 A293642 * A293644 A293645 A293646 KEYWORD nonn,easy AUTHOR Clark Kimberling, Oct 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 20:47 EDT 2019. Contains 321535 sequences. (Running on oeis4.)