The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293642 a(n) is the greatest integer k such that k/Fibonacci(n) < 3/5. 4
 0, 0, 0, 1, 1, 3, 4, 7, 12, 20, 33, 53, 86, 139, 226, 366, 592, 958, 1550, 2508, 4059, 6567, 10626, 17194, 27820, 45015, 72835, 117850, 190686, 308537, 499224, 807761, 1306985, 2114746, 3421732, 5536479, 8958211, 14494690, 23452901, 37947591, 61400493 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 2, 1, -3, -1, 3, 0, -2, 1, 2, -1, -1) FORMULA G.f.: (x^3 (1 + x^4) (1 - x^4 + x^6))/((-1 + x) (-1 + x + x^2) (1 + x + x^2 + x^3 + x^4) (1 - x^2 + x^4 - x^6 + x^8)). a(n) = a(n-1) + 2 a(n-2) - a(n-3) - 2 a(n-4) + 2 a(n-5) + a(n-6) - 3 a(n-7) - a(n-8) + 3 a(n-9) - 2 a(n-11) + a(n-12) + 2 a(n-13) - a(n-14) - a(n-15) for n >= 16. a(n) = floor(3*Fibonacci(n)/5). a(n) = A293643(n) - 1 for n > 0. MATHEMATICA z = 120; r = 3/5; f[n_] := Fibonacci[n]; Table[Floor[r*f[n]], {n, 0, z}];   (* A293642 *) Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293643 *) Table[Round[r*f[n]], {n, 0, z}];   (* A293644 *) CROSSREFS Cf. A000045, A293643, A293644. Sequence in context: A117950 A025047 A050342 * A214286 A108700 A325851 Adjacent sequences:  A293639 A293640 A293641 * A293643 A293644 A293645 KEYWORD nonn,easy AUTHOR Clark Kimberling, Oct 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 13:17 EST 2020. Contains 332044 sequences. (Running on oeis4.)