login
A293550
a(n) = Sum_{k=0..n} k^3*binomial(2*n-k,n).
3
0, 1, 11, 69, 354, 1650, 7293, 31213, 130832, 540702, 2212550, 8989090, 36327810, 146228940, 586823265, 2349424125, 9389012160, 37467344310, 149345215290, 594753416790, 2366845396500, 9413555798556, 37423053793026, 148719333293394, 590842248405024, 2346813893147500
OFFSET
0,3
COMMENTS
Main diagonal of iterated partial sums array of cubes (starting with the first partial sums). For nonnegative integers see A002054, for squares see A265612.
FORMULA
a(n) = [x^n] x*(1 + 4*x + x^2)/(1 - x)^(n+5).
a(n) = 2^(2*n+1)*n^2*(13*n + 7)*Gamma(n+3/2)/(sqrt(Pi)*Gamma(n+5)).
a(n) ~ 26*4^n/sqrt(Pi*n).
MATHEMATICA
Table[Sum[k^3 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[x (1 + 4 x + x^2)/(1 - x)^(n + 5), {x, 0, n}], {n, 0, 25}]
Table[2^(2 n + 1) n^2 (13 n + 7) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 5]), {n, 0, 25}]
CoefficientList[Series[(6 - 6 Sqrt[1 - 4 x] - 36 x + 24 Sqrt[1 - 4 x] x + 55 x^2 - 19 Sqrt[1 - 4 x] x^2 - 15 x^3 + Sqrt[1 - 4 x] x^3)/(2 Sqrt[1 - 4 x] x^4), {x, 0, 25}], x]
CoefficientList[Series[(E^(2 x) (36 - 24 x + 13 x^2) BesselI[0, 2 x])/x^2 + (E^(2 x) (-36 + 24 x - 31 x^2 + 13 x^3) BesselI[1, 2 x])/x^3, {x, 0, 25}], x]* Range[0, 25]!
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2017
STATUS
approved