This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265612 a(n) = CatalanNumber(n+1)*n*(1+3*n)/(6+2*n). 6
 0, 1, 7, 35, 156, 660, 2717, 11011, 44200, 176358, 700910, 2778446, 10994920, 43459650, 171655785, 677688675, 2674776720, 10555815270, 41656918050, 164401379610, 648887951400, 2561511781920, 10113397410402, 39937416869070, 157743149913776, 623178050662300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is row n=7 in the array A(n,k) = (rf(k+n-2,k-1)-(k-1)*(k-2)*rf(k+n-2, k-3))/ (k-1)! if n>=3 and A(n,0)=0, A(n,1)=1, A(n,2)=n; rf(n,k) denotes the rising factorial. See the cross-references for other values of n and the table in A264357. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (5*x+(I*(x-1)*(7*x-2))/sqrt(4*x-1)-2-x^2)/(2*x^3). a(n) = 2*4^n*Gamma(3/2+n)*n*(1+3*n)/(sqrt(Pi)*Gamma(4+n)). a(n) = (rf(5+n, n-1)-(n-1)*(n-2)*rf(5+n, n-3))/(n-1)! for n>=3, rf(n,k) the rising factorial. a(n) = a(n-1)*(2*n*(1+3*n)*(1+2*n)/((n-1)*(3*n-2)*(3+n))) for n>=2. a(n) ~  4^n*(6-(127/4)/n+(7995/64)/n^2-(223405/512)/n^3+(23501457/16384)/n^4-...) /sqrt(n*Pi). a(n) = [x^n] x*(1 + x)/(1 - x)^(n+4). - Ilya Gutkovskiy, Oct 09 2017 MAPLE A265612 := n -> 2*4^n*GAMMA(3/2+n)*n*(1+3*n)/(sqrt(Pi)*GAMMA(4+n)): seq(simplify(A265612(n)), n=0..25); MATHEMATICA Table[SeriesCoefficient[(5 x + (I (x - 1) (7 x - 2))/Sqrt[4 x - 1] - 2 - x^2)/(2 x^3), {x, 0, n}], {n, 0, 25}] (* or *) Table[2*4^n Gamma[3/2 + n] n (1 + 3 n)/(Sqrt[Pi] Gamma[4 + n]), {n, 0, 25}] (* or *) Table[CatalanNumber[n + 1] n ((1 + 3 n)/(6 + 2 n)), {n, 0, 25}] (* Michael De Vlieger, Dec 15 2015 *) PROG (Sage) a = lambda n: catalan_number(n+1)*n*(1+3*n)/(6+2*n) [a(n) for n in range(26)] (PARI) for(n=0, 25, print1(round(2*4^n*gamma(3/2+n)*n*(1+3*n)/(sqrt(Pi)*gamma(4+n))), ", ")) \\ G. C. Greubel, Feb 06 2017 CROSSREFS Cf. A000108, A007946, A097613, A051960, A029651, A051924, A129869, A220101, A264357, A265613. Sequence in context: A005285 A006095 A171477 * A005003 A243382 A242577 Adjacent sequences:  A265609 A265610 A265611 * A265613 A265614 A265615 KEYWORD nonn AUTHOR Peter Luschny, Dec 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 08:57 EDT 2019. Contains 326077 sequences. (Running on oeis4.)