login
A293503
Least integer k such that k/n^2 > sqrt(2).
3
0, 2, 6, 13, 23, 36, 51, 70, 91, 115, 142, 172, 204, 240, 278, 319, 363, 409, 459, 511, 566, 624, 685, 749, 815, 884, 957, 1031, 1109, 1190, 1273, 1360, 1449, 1541, 1635, 1733, 1833, 1937, 2043, 2152, 2263, 2378, 2495, 2615, 2738, 2864, 2993, 3124, 3259
OFFSET
0,2
LINKS
FORMULA
a(n) = ceiling(r*n^2), where r = sqrt(2).
a(n) = A293502(n) + 1 for n > 0.
MATHEMATICA
z = 120; r = Sqrt[2];
Table[Floor[r*n^2], {n, 0, z}]; (* A293502 *)
Table[Ceiling[r*n^2], {n, 0, z}]; (* A293503 *)
Table[Round[r*n^2], {n, 0, z}]; (* A293504 *)
lik[n_]:=Module[{k=0, n2=n^2}, While[k/n2<=Sqrt[2], k++]; k]; Join[ {0}, Array[ lik, 50]] (* Harvey P. Dale, Mar 23 2019 *)
PROG
(PARI) vector(100, n, n--; ceil(n^2*sqrt(2))) \\ G. C. Greubel, Aug 16 2018
(Magma) [Ceiling(n^2*Sqrt(2)): n in [0..100]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 12 2017
STATUS
approved