login
A293015
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = - Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0.
6
1, 1, -1, 1, -1, 0, 1, 0, -1, 1, 1, 0, -1, 2, 1, 1, 0, 0, -3, 9, -2, 1, 0, 0, -1, -3, 4, -9, 1, 0, 0, 0, -4, 20, -95, -9, 1, 0, 0, 0, -1, -10, 150, -414, 50, 1, 0, 0, 0, 0, -5, -10, 504, 49, 267, 1, 0, 0, 0, 0, -1, -15, 105, -343, 10088, 413, 1, 0, 0, 0, 0, 0, -6
OFFSET
0,14
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, -1, 0, 0, 0, ...
0, -1, -1, 0, 0, ...
1, 2, -3, -1, 0, ...
1, 9, -3, -4, -1, ...
CROSSREFS
Columns k=0-4 give: A000587, A292952, A292953, A292954, A292955.
Rows n=0 gives A000012.
Cf. A145460.
Sequence in context: A147701 A228348 A057516 * A293119 A293133 A178471
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Sep 28 2017
STATUS
approved