login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145460 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where sequence a_k of column k is the exponential transform of C(n,k). 14
1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 1, 10, 15, 1, 0, 0, 3, 41, 52, 1, 0, 0, 1, 9, 196, 203, 1, 0, 0, 0, 4, 40, 1057, 877, 1, 0, 0, 0, 1, 10, 210, 6322, 4140, 1, 0, 0, 0, 0, 5, 30, 1176, 41393, 21147, 1, 0, 0, 0, 0, 1, 15, 175, 7273, 293608, 115975, 1, 0, 0, 0, 0, 0, 6, 35, 1176, 49932, 2237921, 678570 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

A(n,k) is also the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box k balls are seen at the top. E.g. A(3,1)=10:

  |1.| |2.| |3.| |1|2| |1|2| |1|3| |1|3| |2|3| |2|3| |1|2|3|

  |23| |13| |12| |3|.| |.|3| |2|.| |.|2| |1|.| |.|1| |.|.|.|

  +--+ +--+ +--+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+-+

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

N. J. A. Sloane, Transforms

FORMULA

A(0,k) = 1 and A(n,k) = Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0. - Seiichi Manyama, Sep 28 2017

EXAMPLE

Square array A(n,k) begins:

   1,   1,  1,  1,  1,  1,  ...

   1,   1,  0,  0,  0,  0,  ...

   2,   3,  1,  0,  0,  0,  ...

   5,  10,  3,  1,  0,  0,  ...

  15,  41,  9,  4,  1,  0,  ...

  52, 196, 40, 10,  5,  1,  ...

MAPLE

exptr:= proc(p) local g; g:=

          proc(n) option remember; `if`(n=0, 1,

             add(binomial(n-1, j-1) *p(j) *g(n-j), j=1..n))

        end: end:

A:= (n, k)-> exptr(i-> binomial(i, k))(n):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

Exptr[p_] := Module[{g}, g[n_] := g[n] = If[n == 0, 1, Sum[Binomial[n-1, j-1] *p[j]*g[n-j], {j, 1, n}]]; g]; A[n_, k_] := Exptr[Function[i, Binomial[i, k]]][n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)

PROG

(Ruby)

def ncr(n, r)

  return 1 if r == 0

  (n - r + 1..n).inject(:*) / (1..r).inject(:*)

end

def A(k, n)

  ary = [1]

  (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s += ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}

  ary

end

def A145460(n)

  a = []

  (0..n).each{|i| a << A(i, n - i)}

  ary = []

  (0..n).each{|i|

    (0..i).each{|j|

      ary << a[i - j][j]

    }

  }

  ary

end

p A145460(20) # Seiichi Manyama, Sep 28 2017

CROSSREFS

Columns k=0-9 give: A000110, A000248, A133189, A145453, A145454, A145455, A145456, A145457, A145458, A145459.

A(2n,n) gives A029651.

Cf.: A007318, A143398, A292948.

Sequence in context: A099493 A088523 A222211 * A292978 A202178 A035543

Adjacent sequences:  A145457 A145458 A145459 * A145461 A145462 A145463

KEYWORD

nonn,tabl,changed

AUTHOR

Alois P. Heinz, Oct 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 18:26 EDT 2018. Contains 315240 sequences. (Running on oeis4.)