login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292689 Decimal values of the antidiagonals of the Sierpinski carpet considered as binary numbers. 4
1, 3, 5, 15, 31, 45, 119, 231, 325, 975, 2015, 2925, 8191, 16383, 23405, 61431, 118759, 166725, 499151, 1030623, 1495405, 4186623, 8372735, 11960685, 31392247, 60686823, 85197125, 255591375, 528222175, 766774125, 2147229695, 4294721535, 6135503725, 16103829495, 31132078055 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Term a(n) is the decimal value of A292688 = concatenation of the terms in row n of A153490 considered as a binary number.

The Sierpinski carpet is the fractal obtained by starting with a unit square and at subsequent iterations, subdividing each square into 3 X 3 smaller squares and removing the middle square. After the n-th iteration, the upper-left 3^n X 3^n squares will always remain the same. Therefore this sequence, which considers the antidiagonals of this infinite matrix, is well-defined.

The n-th term a(n) has n binary digits.

The Hamming weights of the terms (also row sums of A153490) are (1, 2, 2, 4, 5, 4, 6, 6, 4, 8, 10, 8, 13, 14, 10, 14, 13, 8, 14, 16, 12, 18, 18, 12, 16,...)

LINKS

Table of n, a(n) for n=1..35.

Eric Weisstein's World of Mathematics, Sierpinski Carpet.

Wikipedia, Sierpinski carpet.

FORMULA

a(k+1) = 2*a(k)+1 for all k in A003462 = (1, 4, 13, 40, 121, 364, ...). (Conjectured.) - R. J. Cano, Oct 25 2017

This is true, moreover, a(k) = 2^k-1 for these k (and k' = k+1), and the neighboring antidiagonals (k-1 and k+2) have bitmaps of the form {101}*(101 repeated). - M. F. Hasler, Oct 25 2017

EXAMPLE

The Sierpinski carpet matrix A153490 reads

   1 1 1 1 1 1 1 1 1...

   1 0 1 1 0 1 1 0 1...

   1 1 1 1 1 1 1 1 1...

   1 1 1 0 0 0 1 1 1...

   1 0 1 0 0 0 1 0 1...

   1 1 1 0 0 0 1 1 1...

   1 1 1 1 1 1 1 1 1...

   1 0 1 1 0 1 1 0 1...

   1 1 1 1 1 1 1 1 1...

   (...)

The concatenation of the terms in the antidiagonals yields A292688 = (1, 11, 101, 1111, 11111, 101101, 1110111, 11100111, 101000101, 1111001111, 11111011111, 101101101101, 1111111111111, 11111111111111, 101101101101101, ...)

Considered as binary numbers and converted to base 10, this yields 1, 3, 5, 15, 31, 45, 119, 231, 325, ...

PROG

(PARI) A292689(n, A=Mat(1))={while(#A<n, A=matrix(3*#A, 3*#A, i, j, if(A[(i+2)\3, (j+2)\3], i%3!=2||j%3!=2))); sum(k=1, n, A[k, n-k+1]<<k)/2}

CROSSREFS

Cf. A153490, A292688.

Sequence in context: A126087 A148498 A259921 * A286521 A127978 A018470

Adjacent sequences:  A292686 A292687 A292688 * A292690 A292691 A292692

KEYWORD

nonn,base

AUTHOR

M. F. Hasler, Oct 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 08:44 EST 2019. Contains 320325 sequences. (Running on oeis4.)