This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126087 Expansion of c(2x^2)/(1-xc(2x^2)), where c(x) = (1-sqrt(1-4x))/(2x) is the g.f. of the Catalan numbers (A000108). 8
 1, 1, 3, 5, 15, 29, 87, 181, 543, 1181, 3543, 7941, 23823, 54573, 163719, 381333, 1143999, 2699837, 8099511, 19319845, 57959535, 139480397, 418441191, 1014536117, 3043608351, 7426790749, 22280372247, 54669443141, 164008329423 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Series reversion of x(1+x)/(1+2x+3x^2) [offset 0]. - Paul Barry, Mar 13 2007 Hankel transform is 2^C(n+1,2). - Philippe Deléham, Mar 16 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013. FORMULA G.f.: [1-sqrt(1-8x^2)]/[x(4x-1+sqrt(1-8x^2))]. - Emeric Deutsch, Mar 04 2007 a(n) = Sum_{k, 0<=k<=n} 2^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008 a(n) = sum(k=1..n,(1+(-1)^(n-k))*k*2^((n-k)/2-1)*C(n,(n+k)/2)/n), n>0 [Vladimir Kruchinin, Feb 18 2011] a(2n) = A089022(n). - Philippe Deléham, Nov 02 2011 Conjecture: (n+1)*a(n) -3*(n+1)*a(n-1) +8*(2-n)*a(n-2) +24*(n-2)*a(n-3) =0. - R. J. Mathar, Nov 14 2011 a(n) ~ 2^(3*(n+1)/2) * (3+2*sqrt(2) + (3-2*sqrt(2))*(-1)^n) / (n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 13 2014 MAPLE c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G, x=0, 35): seq(coeff(Gser, x, n), n=0..32); # Emeric Deutsch, Mar 04 2007 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *) CROSSREFS Cf. A000108. Sequence in context: A166956 A048738 A018454 * A148498 A259921 A292689 Adjacent sequences:  A126084 A126085 A126086 * A126088 A126089 A126090 KEYWORD nonn AUTHOR Philippe Deléham, Mar 03 2007 EXTENSIONS More terms from Emeric Deutsch, Mar 04 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.