The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292277 a(n) = 2^n*F(n)*F(n+1), where F = A000045. 2
 0, 2, 8, 48, 240, 1280, 6656, 34944, 182784, 957440, 5012480, 26247168, 137428992, 719593472, 3767828480, 19728629760, 103300399104, 540888006656, 2832126181376, 14829205585920, 77646727741440, 406563546202112, 2128794362052608, 11146511995895808 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES R. S. Melham, Closed Forms for Finite Sums of Weighted Products of Generalized Fibonacci Numbers, The Fibonacci Quarterly 55 (May 2017), Number 2, pages 99-104. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,8,-8). FORMULA G.f.: 2*x/((1 + 2*x)*(1 - 6*x + 4*x^2)). a(n) = 4*a(n-1) + 8*a(n-2) - 8*a(n-3). a(n) = ((1+sqrt(5))^(2*n+1) + (1-sqrt(5))^(2*n+1))/(10*2^n) - (-2)^n/5, therefore 5*a(n) + (-2)^n = A082762(n). - Bruno Berselli, Sep 13 2017 MATHEMATICA Table[2^n Fibonacci[n] Fibonacci[n+1], {n, 0, 40}] Table[((1 + Sqrt[5])^(2 n + 1) + (1 - Sqrt[5])^(2 n + 1))/(10 2^n) - (-2)^n/5, {n, 0, 30}] (* Bruno Berselli, Sep 13 2017 *) PROG (MAGMA) [2^n*Fibonacci(n)*Fibonacci(n+1): n in [0..30]]; (PARI) a(n) = 2^n*fibonacci(n)*fibonacci(n+1); \\ Altug Alkan, Sep 13 2017 (Sage) [2^n*fibonacci(n)*fibonacci(n+1) for n in range(30)] # Bruno Berselli, Sep 13 2017 CROSSREFS Cf. A000045, A000079, A001654, A082762. Sequence in context: A193944 A058928 A228288 * A173841 A004141 A009693 Adjacent sequences:  A292274 A292275 A292276 * A292278 A292279 A292280 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Sep 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 18:56 EDT 2020. Contains 334664 sequences. (Running on oeis4.)