login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292278 a(n) = (Fibonacci(3*n-1) + 1)/2 for n >= 1. 2
1, 3, 11, 45, 189, 799, 3383, 14329, 60697, 257115, 1089155, 4613733, 19544085, 82790071, 350704367, 1485607537, 6293134513, 26658145587, 112925716859, 478361013021, 2026369768941, 8583840088783, 36361730124071, 154030760585065, 652484772464329 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Problem B-1211 proposed by Hideyuki Ohtsuka (see Links section): For n >= 1, prove that Fibonacci(n-1)^3 + Sum_{k=1..n} Fibonacci(k)^3 = (Fibonacci(3*n-1) + 1)/2.

Proof. Let F(n-1)^3 = (F(3*n-3) + 3*(-1)^n*F(n-1))/5 (see Ralf Stephan's formula in A056570) and Sum_{k=1..n} F(k)^3 = (F(3*n+2) - 6*(-1)^(n)*F(n-1) + 5)/10 (see Benjamin & Timothy's formula in A005968), where F=A000045, n>0. Therefore, (F(3*n-3) + 3*(-1)^n*F(n-1))/5 + (F(3*n+2) - 6*(-1)^(n)*F(n-1) + 5)/10 = (2*F(3*n-3) + F(3*n+2) + 5)/10 = (2*(F(3*n-1) - F(3*n-2)) + (3*F(3*n-1) + 2*F(3*n-2)) + 5)/10 = (5*F(3*n-1) + 5)/10 = a(n). - Bruno Berselli, Sep 14 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Hideyuki Ohtsuka, Problem B-1211, The Fibonacci Quarterly, Volume 55, Number 3 (August 2017), p. 276 (see Comments section).

Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).

FORMULA

G.f.: x*(1 - 2*x - x^2)/((1 - x)*(1 - 4*x -x^2)).

a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3).

MATHEMATICA

Table[(Fibonacci[3 n - 1] + 1) / 2, {n, 40}]

PROG

(MAGMA) [(Fibonacci(3*n-1)+1)/2: n in [1..30]];

(PARI) a(n) = (fibonacci(3*n-1)+1)/2; \\ Altug Alkan, Sep 13 2017

CROSSREFS

Cf. A000045; A005968, A056570.

Sequence in context: A151109 A151110 A151111 * A151112 A083324 A238578

Adjacent sequences:  A292275 A292276 A292277 * A292279 A292280 A292281

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Sep 13 2017

EXTENSIONS

Edited by Bruno Berselli, Sep 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 06:39 EDT 2019. Contains 328292 sequences. (Running on oeis4.)