This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292183 E.g.f. C(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that C'(x) = C(x) + 2*A(x)*B(x). 3
 1, 1, 3, 13, 63, 361, 2499, 20581, 196311, 2116561, 25357563, 333765037, 4787007855, 74323701817, 1242253733619, 22243082373301, 424815246293319, 8620744969300321, 185235767397027627, 4201390722798810493, 100309092062158564959, 2514646421630798317897, 66041388198395188082595, 1813259146315114344920581, 51950114633383773360554679, 1550392693763071812557794801, 48120508780248064233484223067 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively. Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f. C(x) and related functions A(x) and B(x) satisfy: (1a) A(x)^2 + B(x)^2 = C(x)^2. (1b) B(x)^2 - A(x)^2 = exp(x)^2. (1c) C(x)^2 - 2*A(x)^2 = exp(x)^2. (2a) A(x) = Integral A(x) + B(x)*C(x) dx. (2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx. (2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx. (3a) A(x) = exp(x) * sinh( Integral C(x) dx ). (3b) B(x) = exp(x) * cosh( Integral C(x) dx ). (3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx). (3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2). (4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ). (4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ). (4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ). Limit A292183(n)/A292181(n) = sqrt(2). Limit A292183(n)/A292182(n) = sqrt(2). EXAMPLE E.g.f.: C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +... where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx. RELATED SERIES. A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +... where A(x) = Integral A(x) + B(x)*C(x) dx. B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +... where B(x) = 1 + Integral B(x) + A(x)*C(x) dx. Squares of series. A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +... where A(x)^2 + B(x)^2 = C(x)^2. B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +... where B(x)^2 - A(x)^2 = exp(2*x). C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +... where C(x)^2 - 2*A(x)^2 = exp(2*x). PROG (PARI) {a(n) = my(A=x, B=1, C=1); for(i=0, n, A = intformal(A + B*C + x*O(x^n)); B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(C, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A292181 (A), A292182 (B). Sequence in context: A107097 A202837 A180111 * A006923 A283667 A011272 Adjacent sequences:  A292180 A292181 A292182 * A292184 A292185 A292186 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 22:22 EDT 2019. Contains 322310 sequences. (Running on oeis4.)