login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193543 E.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cosh(2*Pi*n*x/L)/cosh(n*Pi)) where L = Lemniscate constant. 10
1, 1, 9, 153, 4977, 261009, 20039481, 2121958377, 296297348193, 52750142341281, 11662264481073129, 3134732109393169593, 1006734732695870345937, 380718482718134681818929, 167456229155543640166939161, 84761007600911799530893148937, 48919649166315485705652984573633 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

L = Lemniscate constant = 2*(Pi/2)^(3/2)/gamma(3/4)^2 = 2.62205755429...

Compare the definition with that of the dual sequence A193540.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..234

Eric Weisstein's World of Mathematics, Ramanujan Cos/Cosh Identity.

FORMULA

E.g.f.: cosh( Series_Reversion( Integral 1/sqrt( cosh(2*x) ) dx ) ). - Paul D. Hanna, Aug 14 2017

E.g.f.: sqrt(1 + S(x)^2), where S(x) is the e.g.f. of A289695. - Paul D. Hanna, Aug 14 2017

E.g.f.: 1 + Integral S(x) * sqrt(1 + 2*S(x)^2) dx, where S(x) is the e.g.f. of A289695. - Paul D. Hanna, Aug 14 2017

...

Given e.g.f. A(x), define the e.g.f. of A193540:

B(x) = Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} cos(2*Pi*n*x/L) / cosh(n*Pi)),

then A(x)^-2 + B(x)^-2 = 2 by Ramanujan's cos/cosh identity.

...

E.g.f. equals the reciprocal of the e.g.f. of A193544.

...

O.g.f.: 1/(1 - 1^2*x/(1 - 2*2^2*x/(1 - 3^2*x/(1 - 2*4^2*x/(1 - 5^2*x/(1 - 2*6^2*x/(1 - 7^2*x/(1 - 2*8^2*x/(1-...))))))))) (continued fraction).

O.g.f.: Pi/(sqrt(2)*L) * (1 + 2*Sum_{n>=1} 1/(1 - (2*n*Pi/L)^2*x) / cosh(n*Pi)) where L = Lemniscate constant. - Paul D. Hanna, Aug 29 2012

...

a(n) = sqrt(2)*Pi/L * Sum_{k>=1} (2*k*Pi/L)^(2*n) / cosh(k*Pi) for n>0 where L = Lemniscate constant. - Paul D. Hanna, Aug 29 2012

...

G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)^2/(x*(2*k+1)^2 - 1/(1 - 2*x*(2*k+2)^2/(2*x*(2*k+2)^2 - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013

a(n) ~ 2^(7*n + 4) * Pi^(n+1) * n^(2*n + 1/2) / (exp(2*n) * Gamma(1/4)^(4*n + 2)). - Vaclav Kotesovec, Nov 29 2020

EXAMPLE

E.g.f.: A(x) = 1 + x^2/2! + 9*x^4/4! + 153*x^6/6! + 4977*x^8/8! + 261009*x^10/10! + 20039481*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...

where

A(x)*sqrt(2)*L/Pi = 1 + 2*cosh(2*Pi*x/L)/cosh(Pi) + 2*cosh(4*Pi*x/L)/cosh(2*Pi) + 2*cosh(6*Pi*x/L)/cosh(3*Pi) +...

Let B(x) equal the e.g.f. of A193540, where:

B(x)*sqrt(2)*L/Pi = 1 + 2*cos(2*Pi*x/L)/cosh(Pi) + 2*cos(4*Pi*x/L)/cosh(2*Pi) + 2*cos(6*Pi*x/L)/cosh(3*Pi) +...

explicitly,

B(x) = 1 - x^2/2! + 9*x^4/4! - 153*x^6/6! + 4977*x^8/8! - 261009*x^10/10! + 20039481*x^12/12! +...

then A(x)^-2 + B(x)^-2 = 2

as illustrated by:

A(x)^-2 = 1 - 2*x^2/2! + 144*x^6/6! - 96768*x^10/10! + 268240896*x^14/14! +...

B(x)^-2 = 1 + 2*x^2/2! - 144*x^6/6! + 96768*x^10/10! - 268240896*x^14/14! +...

...

O.g.f.: 1 + x + 9*x^2 + 153*x^3 + 4977*x^4 + 261009*x^5 + 20039481*x^6 +...+ a(n)*x^n +...

O.g.f.: 1/(1 - x/(1 - 8*x/(1 - 9*x/(1 - 32*x/(1 - 25*x/(1 - 72*x/(1 - 49*x/(1 - 128*x/(1-...))))))))).

MATHEMATICA

nmax = 20; s = CoefficientList[Series[JacobiDN[Sqrt[2]*x, 1/2], {x, 0, 2*nmax}], x] * Range[ 0, 2*nmax]!; Table[(-1)^n * s[[2*n + 1]], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 29 2020 *)

PROG

(PARI) {a(n)=local(L=2*(Pi/2)^(3/2)/gamma(3/4)^2); if(n==0, 1, sqrt(2)*Pi/L*suminf(k=1, (2*k*Pi/L)^(2*n)/cosh(k*Pi)))} \\ Paul D. Hanna, Aug 29 2012

for(n=0, 20, print1(a(n), ", "))

(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);

R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1, cosh(2*Pi*m*x/L +O(x^(2*n+1)))/cosh(m*Pi)));

round((2*n)!*polcoeff(R, 2*n))}

(PARI) {a(n)=local(R, L=2*(Pi/2)^(3/2)/gamma(3/4)^2);

R=Pi/(sqrt(2)*L)*(1 + 2*suminf(m=1, 1/(1 - (2*m*Pi/L)^2*x+x*O(x^n))/cosh(m*Pi)));

round(polcoeff(R, n))} \\ Paul D. Hanna, Aug 29 2012

(PARI) {a(n) = my(C=1); C = cosh( serreverse( intformal( 1/sqrt( cosh(2*x +O(x^(2*n+1))) ) ) ) ); (2*n)!*polcoeff(C, 2*n)}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 14 2017

CROSSREFS

Cf. A193540, A193541, A193542, A193544, A193545.

Sequence in context: A009037 A012148 A193540 * A173982 A185759 A215557

Adjacent sequences: A193540 A193541 A193542 * A193544 A193545 A193546

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 10:55 EST 2022. Contains 358556 sequences. (Running on oeis4.)