OFFSET
0,1
COMMENTS
Also x^2 = A091661.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..9999
EXAMPLE
7^5 - 7 == 0 mod 10,
7^5 - 7 == 0 mod 10^2,
807^5 - 807 == 0 mod 10^3,
5807^5 - 5807 == 0 mod 10^4.
From Seiichi Manyama, Aug 01 2019: (Start)
2^(5^0) - 5^(2^0) == 7 mod 10,
2^(5^1) - 5^(2^1) == 7 mod 10^2,
2^(5^2) - 5^(2^2) == 807 mod 10^3,
2^(5^3) - 5^(2^3) == 5807 mod 10^4. (End)
PROG
(Ruby)
def P(n)
s1, s2 = 2, 8
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k1, k2 = j * m + s1, (9 - j) * m + s2
if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0
s1, s2 = k1, k2
break
end
}
}
s1
end
def Q(s, n)
n.times{|i|
m = 10 ** (i + 1)
(0..9).each{|j|
k = j * m + s
if (k ** 2 - k) % (m * 10) == 0
s = k
break
end
}
}
s
end
def A290372(n)
str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse
(0..n).map{|i| str[i].to_i}
end
p A290372(100)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Jul 28 2017
STATUS
approved