login
A288443
a(n) = (2n + 1)*2^(2n + 1); numbers k such that v(k)*2^v(k) = k, where v(n) = A007814(n) is 2-adic valuation of n.
0
2, 24, 160, 896, 4608, 22528, 106496, 491520, 2228224, 9961472, 44040192, 192937984, 838860800, 3623878656, 15569256448, 66571993088, 283467841536, 1202590842880, 5085241278464, 21440476741632, 90159953477632, 378231999954944, 1583296743997440, 6614661952700416, 27584547717644288, 114841790497947648
OFFSET
0,1
FORMULA
a(n) = (2n + 1)*2^(2n + 1).
a(n) = A036289(2n + 1).
a(n) = A098713(n) + 1.
a(n) = 2*A058962(n). - Joerg Arndt, Jun 25 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=0} 1/a(n) = arctanh(1/2) = log(3)/2 (A156057).
Sum_{n>=0} (-1)^n/a(n) = arctan(1/2) (A073000). (End)
PROG
(Magma) [(2*n+1)*2^(2*n+1): n in [0..25]];
(PARI) a(n) = (2*n+1)<<(2*n+1) \\ Charles R Greathouse IV, Jul 07 2017
CROSSREFS
Odd bisection of A036289.
Sequence in context: A189247 A234352 A241623 * A108476 A157053 A279853
KEYWORD
nonn,easy
AUTHOR
STATUS
approved