login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073000 Decimal expansion of arctangent of 1/2. 10
4, 6, 3, 6, 4, 7, 6, 0, 9, 0, 0, 0, 8, 0, 6, 1, 1, 6, 2, 1, 4, 2, 5, 6, 2, 3, 1, 4, 6, 1, 2, 1, 4, 4, 0, 2, 0, 2, 8, 5, 3, 7, 0, 5, 4, 2, 8, 6, 1, 2, 0, 2, 6, 3, 8, 1, 0, 9, 3, 3, 0, 8, 8, 7, 2, 0, 1, 9, 7, 8, 6, 4, 1, 6, 5, 7, 4, 1, 7, 0, 5, 3, 0, 0, 6, 0, 0, 2, 8, 3, 9, 8, 4, 8, 8, 7, 8, 9, 2, 5, 5, 6, 5, 2, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The angle at which you must shoot a cue ball on a standard pool table so that it will strike all four sides and return to its origin. [Barrow] - Robert G. Wilson v, Nov 29 2015

REFERENCES

John D. Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton & Co., NY & London, 2008.

LINKS

Table of n, a(n) for n=0..104.

P. Bala, New series for old functions

R. J. Mathar, Hierarchical Subdivision of the Simple Cubic Lattice, arXiv preprint arXiv:1309.3705 [math.MG], 2013.

Simon Plouffe, arctan(1/2)

FORMULA

Equals Pi/2 - A105199 = A019669 - A105199. - R. J. Mathar, Aug 21 2013

From Peter Bala, Feb 04 2015: (Start)

Arctan(1/2) = 1/2*Sum_{k >= 0} (-1)^k/((2*k + 1)*4^k).

Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*4^k). Both sequences satisfy the same second order recurrence equation u(n) = (12*n + 10)*u(n-1) + 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 2*arctan(1/2) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ...)))). See A002391, A105531 and A002162 for similar expansions.

Arctan(1/2) = 2/5 * Sum_{k >= 0} (4/5)^k/((2*k + 1)*binomial(2*k,k)).

Define a pair of integer sequences C(n) = 5^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (4/5)^k/((2*k + 1)*binomial(2*k,k)). Both sequences satisfy the same second order recurrence equation u(n) = (24*n + 10)*u(n-1) - 40*n*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 5/2*arctan(1/2) = 1 + 4/(30 - 240/(58 - 600/(82 - ... - 40*n*(2*n - 1)/((24*n + 10) - ... )))).

Arctan(1/2) = 2/25 * Sum_{k >= 0} (24*k + 17)*(4/5)^(2*k)/( (4*k + 1)*(4*k + 3)*binomial(4*k,2*k) ).

Arctan(1/2) = 2/125 * Sum_{k >= 0} (1116*k^2 + 1446*k + 433)*(4/5)^(3*k)/( (6*k + 1)*(6*k + 3)*(6*k + 5)*binomial(6*k,3*k) ). (End)

EXAMPLE

Arctan(1/2)

=0.463647609000806116214256231461214402028537054286120263810933088720197864165... radians

=26°.56505117707798935157219372045329467120421429964522102798601631528806582148474...

=26°33'.9030706246793610943316232271976802722528579787132616791609789172839492890...

=26°33'54".184237480761665659897393631860816335171478722795700749658735037036957...

complement = 63°.43494882292201064842780627954670532879578570035477897201398368471...

supplement = 153°.4349488229220106484278062795467053287957857003547789720139836847...

MAPLE

evalf(arctan(0.5)) ; # R. J. Mathar, Aug 22 2013

MATHEMATICA

RealDigits[ ArcTan[1/2], 10, 110] [[1]]

PROG

(PARI) default(realprecision, 2000); atan(1/2) \\ Anders Hellström, Nov 30 2015

CROSSREFS

Cf. A002162, A002391, A105531, A254619.

Sequence in context: A179453 A273819 A276761 * A198113 A264962 A082193

Adjacent sequences:  A072997 A072998 A072999 * A073001 A073002 A073003

KEYWORD

cons,nonn

AUTHOR

Robert G. Wilson v, Aug 03 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.