login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A287823
a(n) = A287729(n)*A001511(n).
2
1, 0, 1, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 4, 3, 5, 4, 6, 5, 6, 5, 6, 4, 4, 3, 4, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 6, 5, 6, 5, 6, 4, 5, 5, 8, 7, 9, 8, 10, 7, 8, 7, 10, 8, 9, 7, 8, 5, 7, 6, 10, 9, 12, 11, 14, 10, 12, 11, 16, 13, 15, 12, 14, 9, 10, 9
OFFSET
1,4
COMMENTS
For n > 0, define the sequence chf(n) of Christoffel words over an alphabet {-,+} by recursion with chf(1) = '-' and chf(2*n+0) = negate(chf(n)), chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))).
The chf(n) word has length fusc(n) = A002487(n) and splits uniquely into two parent Christoffel words - the left Christoffel word lef(n) of length l-fusc(n) = A288002(n) and the right Christoffel word rig(n) of length r-fusc(n) = A288003(n).
For n > 0, define the lap(n) word to be the chf(n) word taken to the power A001511(n), so that the factor-word chf(n) repeats in lap(n) A001511(n) times.
Consider the odd bisection CHF(n) of the chf(n) sequence. Each CHF(n) word has length A007306(n). Then the sequence lap(n) is obtained by cutting off the word lef(n) of length A288002(n) at the left side of negate(CHF(n)) and negating the first letter of the new word iff lef(n) is empty, i.e., iff A288002(n)==0.
The length of the lap(n) word is A287896(n), the number of '-'-signs in the lap(n) word is a(n) and the number of '+'-signs in the lap(n) word is A287824(n).
There are exactly n words of length n in the sequence lap(n). These n words lap(j) are all different with 1<=a(j)<=n for 1<=j<=n.
a(n)/A287824(n) enumerates all fractions along the tree of fractions.
a(n)/A287896(n) enumerates all proper fractions along the tree of proper fractions.
See the Serov links and the example below.
FORMULA
a(n) = A287896(n) - A287824(n).
a(n) = (A287729(n-1) + A287729(n) + A287729(n+1))/2 + A154269(n).
gcd(a(n), A287896(n)) == gcd(a(n), A287824(n)) == A001511(n).
From Yosu Yurramendi, Apr 09 2019: (Start)
For m >= 0, m even, 0 <= k < 2^m, a(2^m+k) = A287896(2^m-k).
For m >= 0, m odd, 0 <= k < 2^m, a(2^m+k) = A287896(k). A287896(0) = 0 is needed. (End)
EXAMPLE
n chf(n) A070939(n) A001511(n) A002487(n) lef(n) CHF(n) lap(n) a(n)
1 '-' 1 1 1 '' '-' '-' 1
2 '+' 2 2 1 '' '+-' '++' 0
3 '+-' 2 2 2 '+' '--+' '+-' 1
4 '-' 3 1 1 '' '-++' '---' 3
5 '--+' 3 3 3 '-' '+++-' '--+' 2
6 '-+' 3 1 2 '-' '++-+-' '-+-+' 2
7 '-++' 3 1 3 '-+' '+-+--' '-++' 1
8 '+' 4 1 1 '' '+---' '++++' 0
9 '+++-' 4 4 4 '+' '----+' '+++-' 1
10 '++-' 4 1 3 '+' '---+--+' '++-++-' 2
11 '++-+-' 4 1 5 '++-' '--+--+-+' '++-+-' 2
12 '+-' 4 1 2 '+' '--+-+-+' '+-+-+-' 3
13 '+-+--' 4 2 5 '+-' '-+-+-++' '+-+--' 3
14 '+--' 4 1 3 '+-' '-+-++-++' '+--+--' 4
15 '+---' 4 1 4 '+--' '-++-+++' '+---' 3
16 '-' 5 1 1 '' '-++++' '-----' 5
17 '----+' 5 5 5 '-' '+++++-' '----+' 4 .
PROG
(Python)
def c(n): return 1 if n==1 else s(n/2) if n%2==0 else s((n - 1)/2) + s((n + 1)/2)
def s(n): return 0 if n==1 else c(n/2) if n%2==0 else c((n - 1)/2) + c((n + 1)/2)
def a001511(n): return bin(n)[2:][::-1].index("1") + 1
def a(n): return c(n)*a001511(n) # Indranil Ghosh, Jun 08 2017
KEYWORD
nonn,frac
AUTHOR
I. V. Serov, Jun 03 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 19:55 EDT 2024. Contains 376138 sequences. (Running on oeis4.)