login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154269 Dirichlet inverse of A019590; Fully multiplicative with a(2^e) = (-1)^e, a(p^e) = 0 for odd primes p. 13
1, -1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Equals +1 if n is an even power of 2 (2^0, 2^2, 2^4,...), -1 if n is an odd power of 2 (2^1, 2^3, 2^5,..) and zero anywhere else.

Mobius transform of A035263. - R. J. Mathar, Jul 14 2012

LINKS

Mats Granvik (first 220 terms) & Antti Karttunen, Table of n, a(n) for n = 1..65536

FORMULA

Abs(a(n)) = A036987(n-1) = A209229(n).

a(n) is multiplicative with a(2^e) = (-1)^e, a(p^e) = 0^e if p>2. - Michael Somos, Jul 05 2009

G.f. A(x) satisfies x = A(x) + A(x^2).

Dirichlet g.f.: (1 + 2^(-s))^(-1). - Michael Somos, Jul 05 2009

a(1) = 1, after which: a(2n) = -a(n), a(2n+1) = 0. - Antti Karttunen, Jul 24 2017

EXAMPLE

x - x^2 + x^4 - x^8 + x^16 - x^32 + x^64 - x^128 + x^256 - x^512 + ...

MATHEMATICA

nn = 95; a = PadRight[{1, 1}, nn, 0]; Inverse[Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]][[All, 1]] (* Mats Granvik, Jul 24 2017 *)

PROG

(PARI) {a(n) = if( n < 2, n == 1, - a(n / 2))} /* Michael Somos, Jul 05 2009 */

(Scheme) (define (A154269 n) (cond ((= 1 n) 1) ((even? n) (* -1 (A154269 (/ n 2)))) (else 0))) ;; Antti Karttunen, Jul 24 2017

CROSSREFS

Cf. A209229 (gives the absolute values).

Cf. A035263, A154271, A154282.

Sequence in context: A134668 A039963 A058840 * A036987 A181101 A214509

Adjacent sequences:  A154266 A154267 A154268 * A154270 A154271 A154272

KEYWORD

sign,mult

AUTHOR

Mats Granvik, Jan 06 2009

EXTENSIONS

Alternative description added to the name by Antti Karttunen, Jul 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 18:41 EST 2018. Contains 299381 sequences. (Running on oeis4.)