login
A286191
a(n) = (2^n-1)^2 + 2*n.
3
3, 13, 55, 233, 971, 3981, 16143, 65041, 261139, 1046549, 4190231, 16769049, 67092507, 268402717, 1073676319, 4294836257, 17179607075, 68718952485, 274876858407, 1099509530665, 4398042316843, 17592177655853, 70368727400495, 281474943156273, 1125899839733811
OFFSET
1,1
COMMENTS
Number of connected induced (non-null) subgraphs of the complete bipartite graph K(n,n).
LINKS
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
FORMULA
a(n) = (2^n-1)^2 + 2*n.
From Colin Barker, May 30 2017: (Start)
G.f.: x*(3 - 11*x + 14*x^2) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)).
a(n) = 8*a(n-1) - 21*a(n-2) + 22*a(n-3) - 8*a(n-4) for n>4.
(End)
MATHEMATICA
a[n_] := (2^n-1)^2 + 2*n; Array[a, 30]
Table[(2^n - 1)^2 + 2 n, {n, 20}] (* Eric W. Weisstein, Aug 09 2017 *)
LinearRecurrence[{8, -21, 22, -8}, {3, 13, 55, 233}, 20] (* Eric W. Weisstein, Aug 09 2017 *)
CoefficientList[Series[(3 - 11 x + 14 x^2)/((-1 + x)^2 (1 - 6 x + 8 x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 09 2017 *)
PROG
(PARI) Vec(x*(3 - 11*x + 14*x^2) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 30 2017
CROSSREFS
Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).
Sequence in context: A372414 A296045 A370624 * A033887 A291653 A183804
KEYWORD
nonn,easy
AUTHOR
Giovanni Resta, May 05 2017
EXTENSIONS
Name changed to the formula by Eric W. Weisstein, Aug 09 2017
STATUS
approved