login
A020873
a(n) is number of cycles in Moebius ladder M_n.
16
2, 3, 7, 15, 29, 53, 95, 171, 313, 585, 1115, 2159, 4229, 8349, 16567, 32979, 65777, 131345, 262451, 524631, 1048957, 2097573, 4194767, 8389115, 16777769, 33555033, 67109515, 134218431, 268436213, 536871725, 1073742695, 2147484579, 4294968289, 8589935649
OFFSET
0,1
COMMENTS
For n >= 2, a(n+1) is the number of connected induced (non-null) subgraphs of the n-wheel graph. - Giovanni Resta, May 04 2017
LINKS
J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.
Eric Weisstein's World of Mathematics, Connected Graph
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Möbius Ladder
Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = 2^n + n^2 - n + 1.
From R. J. Mathar, May 31 2010: (Start)
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4).
G.f.: (2 - 7*x + 10*x^2 - 7*x^3)/((2*x - 1)*(x - 1)^3). (End)
E.g.f.: exp(x)*(1 + exp(x) + x^2). - Stefano Spezia, Aug 25 2022
MATHEMATICA
Table[2^n+n^2-n+1, {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, May 07 2010 *)
PROG
(PARI) Vec((2-7*x+10*x^2-7*x^3) / ((2*x-1)*(x-1)^3) + O(x^50)) \\ Colin Barker, Aug 01 2015
CROSSREFS
Sequence in context: A001276 A006884 A074742 * A049958 A298403 A177487
KEYWORD
nonn,easy
STATUS
approved