login
A285070
Expansion of Product_{k>=0} (1-x^(4*k+1))^(4*k+1).
5
1, -1, 0, 0, 0, -5, 5, 0, 0, -9, 19, -10, 0, -13, 58, -55, 10, -17, 118, -191, 95, -26, 223, -512, 400, -116, 362, -1175, 1329, -564, 609, -2368, 3593, -2218, 1246, -4402, 8600, -7118, 3433, -7792, 18503, -19778, 10702, -13924, 37009, -49017, 32097, -27141
OFFSET
0,6
LINKS
FORMULA
a(n) ~ (-1)^n * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Apr 17 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1-x^(4*k-3))^(4*k-3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 17 2017 *)
CROSSREFS
Product_{k>=0} (1-x^(m*k+1))^(m*k+1): A285069 (m=2), A285050 (m=3), this sequence (m=4), A285071 (m=5).
Sequence in context: A247667 A115144 A200506 * A285288 A356116 A281165
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 15 2017
STATUS
approved