login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115144 Fifth convolution of A115140. 4
1, -5, 5, 0, 0, -1, -5, -20, -75, -275, -1001, -3640, -13260, -48450, -177650, -653752, -2414425, -8947575, -33266625, -124062000, -463991880, -1739969550, -6541168950, -24647883000, -93078189750, -352207870014, -1335293573130, -5071418015120, -19293438101000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1669

FORMULA

O.g.f.: 1/c(x)^5 = P(6, x) - x*P(5, x)*c(x) with the o.g.f. c(x) = (1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(6, x)=1-4*x+3*x^2 and P(5, x)=1-3*x+x^2.

a(n) = -C5(n-5), n>=5, with C5(n) = A000344(n+2) (fifth convolution of Catalan numbers). a(0)=1, a(1)=-5, a(2)=5, a(3)=0=a(4). [1, -5, 5] is row n=5 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.

MATHEMATICA

CoefficientList[Series[(1-5*x+5*x^2 +(1-3*x+x^2)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-5*x+5*x^2 +(1-3*x+x^2)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-5*x+5*x^2 +(1-3*x+x^2)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019

(Sage) ((1-5*x+5*x^2 +(1-3*x+x^2)*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

CROSSREFS

Cf. A115139 - A115143, A115145 - A115149.

Sequence in context: A197738 A189232 A247667 * A200506 A285070 A285288

Adjacent sequences:  A115141 A115142 A115143 * A115145 A115146 A115147

KEYWORD

sign,easy

AUTHOR

Wolfdieter Lang, Jan 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 23:21 EDT 2019. Contains 325109 sequences. (Running on oeis4.)