OFFSET
0,2
COMMENTS
The numerators are given in A157799.
Because B(n, 2/3) = (-1)^n*B(n, 1/3) (from the e.g.f. z*exp(x*z)/(exp(z)-1) of Bernoulli polynomials {B(n, x)}_{n>=0}) one has for the numbers B[3,2](n) = 3^n*B(n, 2/3) the numerators (-1)^n*A157799(n) and the denominators a(n).
This sequence gives also the denominators of {3^n*B(n)}_{n>=0} with numerators given in A285863.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..500
Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
Peter Luschny, Generalized Bernoulli numbers.
FORMULA
EXAMPLE
The Bernoulli numbers r(n) = B[3,1](n) begin: 1, -1/2, -1/2, 1, 13/10, -5, -121/14, 49, 1093/10, -809, -49205/22, 20317, 61203943/910, -722813, -5580127/2, 34607305, ...
The Bernoulli numbers B(3,2](n) begin: 1, 1/2, -1/2, -1, 13/10, 5, -121/14, -49, 1093/10, 809, -49205/22, -20317, 61203943/910, 722813, -5580127/2, -34607305, ...
From Peter Luschny, Mar 26 2021: (Start)
The generalized Bernoulli numbers as given in the Luschny link are different.
1, -7/2, 23/2, -35, 973/10, -245, 7943/14, -1295, 31813/10, -7721, 288715/22, -13475, 128296423/910, -882557, -4891999/2, 33870025, ...The numerators of these numbers are in A157811. (End)
MATHEMATICA
Table[Denominator[3^n*BernoulliB[n, 1/3]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
PROG
(Python)
from sympy import bernoulli, Rational
def a(n):
return (3**n * bernoulli(n, Rational(1, 3))).as_numer_denom()[1]
print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 18 2017
(SageMath) # uses [gen_bernoulli_number from A157811]
print([denominator((-1)^n*gen_bernoulli_number(n, 3)) for n in range(23)])
# Peter Luschny, Mar 26 2021
(PARI) a(n) = denominator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Apr 28 2017
STATUS
approved