login
A284795
Positions of 0's in A284793.
5
3, 5, 11, 13, 15, 17, 21, 23, 27, 29, 35, 37, 39, 41, 47, 49, 51, 53, 57, 59, 65, 67, 69, 71, 75, 77, 83, 85, 87, 89, 93, 95, 99, 101, 107, 109, 111, 113, 119, 121, 123, 125, 129, 131, 135, 137, 143, 145, 147, 149, 155, 157, 159, 161, 165, 167, 173, 175, 177
OFFSET
1,1
COMMENTS
This sequence and A284795 and A284796 form a partition of the positive integers. Conjecture: for n>=1, we have a(n)-3n+3 in {0,1}, 3*n+2-A284795(n) in {0,1,2,3}, and 3*n-2-A284795(n) in {0,1}.
A284793 = (1,-1,0,1,0,-1,1,-1,1,-1,0,1,0,-1,0,1,0,-1,1,-1,0,1,0,-1, ... ); thus
A284794 = (2,6,8,10,14,...)
A284795 = (3,5,11,13,15,...)
A284796 = (1,4,7,9,12,15,...).
LINKS
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 0, 1, 1}}] &, {0}, 7] (* A284775 *)
d = Differences[s] (* A284793 *)
Flatten[Position[d, -1]] (* A284794 *)
Flatten[Position[d, 0]] (* A284795 *)
Flatten[Position[d, 1]] (* A284796 *)
d1/2 (* positions of 0 in A189664 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2017
STATUS
approved