login
A069977
Numbers k such that k and k+2 are squarefree.
3
1, 3, 5, 11, 13, 15, 17, 19, 21, 29, 31, 33, 35, 37, 39, 41, 51, 53, 55, 57, 59, 65, 67, 69, 71, 77, 83, 85, 87, 89, 91, 93, 95, 101, 103, 105, 107, 109, 111, 113, 127, 129, 131, 137, 139, 141, 143, 149, 155, 157, 159, 161, 163, 165, 177, 179, 181, 183, 185, 191, 193
OFFSET
1,2
COMMENTS
The asymptotic density of this sequence is Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474) (Mirsky, 1949). - Amiram Eldar, Dec 29 2020
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Bin Chen, On almost-prime $k$-tuples, arXiv preprint (2023). arXiv:2301.05044 [math.NT], 2023.
Leon Mirsky, On the frequency of pairs of square-free numbers with a given difference, Bull. Amer. Math. Soc., Vo. 55, No. 10 (1949), pp. 936-939.
MATHEMATICA
f[n_] := Union[ Transpose[ FactorInteger[n]] [[ -1]]] [[ -1]]; Select[ Range[200], f[ # ] < 2 && f[ # + 2] < 2 & ]
SequencePosition[Table[If[SquareFreeQ[n], 1, 0], {n, 200}], {1, _, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 06 2017 *)
PROG
(PARI) is(n)=n%2 && issquarefree(n) && issquarefree(n+2) \\ Charles R Greathouse IV, May 15 2016
CROSSREFS
Sequence in context: A014597 A357369 A130603 * A284795 A329629 A340019
KEYWORD
nonn
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), May 01 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 04 2002
1 prepended by Vladimir Joseph Stephan Orlovsky, Mar 30 2011
STATUS
approved