login
A282718
Satisfies the tribonacci recurrence: a(n) = a(n-1) + a(n-2) + a(n-3).
2
0, 1, 3, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591, 29249425, 53798080, 98950096, 181997601, 334745777, 615693474
OFFSET
0,3
LINKS
Julien Leroy, Michel Rigo, Manon Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles Discrete Mathematics 340 (2017), 862-881. See Example 43.
FORMULA
a(n) = A000073(n+2), n >= 3. - R. J. Mathar, Mar 03 2017
G.f.: x*(1 + 2*x - x^3 - x^4)/(1 - x - x^2 - x^3). - Bruno Berselli, Mar 03 2017
MATHEMATICA
Join[{0, 1, 3}, LinearRecurrence[{1, 1, 1}, {4, 7, 13}, 20]] (* Vincenzo Librandi, Mar 28 2017 *)
PROG
(Magma) I:=[0, 1, 3, 4, 7, 13]; [n le 6 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 28 2017
CROSSREFS
Cf. A000073.
Sequence in context: A299024 A116201 A280224 * A092406 A250297 A254310
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 02 2017
STATUS
approved