login
A282716
Generalized Pascal triangle based on Zeckendorf representation of numbers, read by rows.
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 1, 3, 3, 0, 1, 1, 2, 2, 1, 2, 0, 1, 1, 2, 3, 1, 1, 0, 0, 1, 1, 1, 4, 6, 0, 4, 0, 0, 1, 1, 2, 3, 3, 3, 1, 3, 0, 0, 1, 1, 2, 4, 3, 2, 1, 1, 2, 0, 0, 1, 1, 2, 5, 4, 1, 1, 0, 2, 0, 0, 0, 1, 1, 3, 3, 1, 4, 0, 1, 1, 0
OFFSET
0,9
LINKS
Julien Leroy, Michel Rigo, Manon Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Mathematics 340 (2017), 862-881. See Table 3.
EXAMPLE
Triangle begins:
1,
1,1,
1,1,1,
1,1,2,1,
1,2,1,0,1,
1,1,3,3,0,1,
1,2,2,1,2,0,1,
1,2,3,1,1,0,0,1,
1,1,4,6,0,4,0,0,1,
1,2,3,3,3,1,3,0,0,1
1,2,4,3,2,1,1,2,0,0,1
1,2,5,4,1,1,0,2,0,0,0,1
1,3,3,1,4,0,1,1,0,0,0,0,1
...
CROSSREFS
For number of nonzero entries in rows see A282717.
Cf. A014417.
Sequence in context: A015488 A014570 A015131 * A167194 A185018 A333289
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 02 2017
EXTENSIONS
More terms from Lars Blomberg, Mar 03 2017
STATUS
approved