

A281503


Solutions x to the negative Pell equation y^2 = 33*x^2  8 with x,y >= 0.


2



1, 3, 43, 137, 1977, 6299, 90899, 289617, 4179377, 13316083, 192160443, 612250201, 8835201001, 28150193163, 406227085603, 1294296635297, 18677610736737, 59509495030499, 858763866804299, 2736142474767657, 39484460262261017, 125803044344281723
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
M. A. Gopalan, S. Vidhyalakshmi, E. Premalatha, R. Janani, On The Negative Pell Equation y^2 = 33*x^2  8, International Journal of Multidisciplinary Research and Modern Education (IJMRME), Volume II, Issue I, 2016.
Index entries for linear recurrences with constant coefficients, signature (0,46,0,1).


FORMULA

a(n) = 46*a(n2)  a(n4) for n>4.
G.f.: x*(1  x)*(1 + 4*x + x^2) / (1  46*x^2 + x^4).


EXAMPLE

3 is in the sequence because (x, y) = (3, 17) is a solution to y^2 = 33*x^2  8.


PROG

(PARI) Vec(x*(1  x)*(1 + 4*x + x^2) / (1  46*x^2 + x^4) + O(x^30))


CROSSREFS

Cf. A281504.
Sequence in context: A062647 A003525 A042661 * A030990 A054698 A229695
Adjacent sequences: A281500 A281501 A281502 * A281504 A281505 A281506


KEYWORD

nonn,easy


AUTHOR

Colin Barker, Jan 23 2017


STATUS

approved



