login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281503 Solutions x to the negative Pell equation y^2 = 33*x^2 - 8 with x,y >= 0. 2
1, 3, 43, 137, 1977, 6299, 90899, 289617, 4179377, 13316083, 192160443, 612250201, 8835201001, 28150193163, 406227085603, 1294296635297, 18677610736737, 59509495030499, 858763866804299, 2736142474767657, 39484460262261017, 125803044344281723 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

M. A. Gopalan, S. Vidhyalakshmi, E. Premalatha, R. Janani, On The Negative Pell Equation y^2 = 33*x^2 - 8, International Journal of Multidisciplinary Research and Modern Education (IJMRME), Volume II, Issue I, 2016.

Index entries for linear recurrences with constant coefficients, signature (0,46,0,-1).

FORMULA

a(n) = 46*a(n-2) - a(n-4) for n>4.

G.f.: x*(1 - x)*(1 + 4*x + x^2) / (1 - 46*x^2 + x^4).

EXAMPLE

3 is in the sequence because (x, y) = (3, 17) is a solution to y^2 = 33*x^2 - 8.

PROG

(PARI) Vec(x*(1 - x)*(1 + 4*x + x^2) / (1 - 46*x^2 + x^4) + O(x^30))

CROSSREFS

Cf. A281504.

Sequence in context: A062647 A003525 A042661 * A030990 A054698 A229695

Adjacent sequences:  A281500 A281501 A281502 * A281504 A281505 A281506

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Jan 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 00:33 EST 2017. Contains 295107 sequences.