|
COMMENTS
|
f(n) = (n+1)/A000918(n+2) = 1/2, 2/6, 3/14, 4/30, 5/62, 6/126, 7/254, 8/510, 9/1022, 10/2046, 11/4094, 12/8190, ... .
Partial reduction: 1/2, 1/3, 3/14, 2/15, 5/62, 3/63, 7/254, 4/255, 9/1022, 5/1023, 11/4094, 6/4095, ... = A026741(n+1)/a(n).
Full reduction: 1/2, 1/3, 3/14, 2/15, 5/62, 1/21, 7/254, ... = A111701(n+1)/(2, 3, 14, 15, 62, 21, ... )
A164555(n+1)/A027642(n) = 1/2, 1/6, 0, -1/30, 0, 1/42, ... = f(n) * A198631(n)/A006519(n+1) = 1, 1/2, 0, -1/4, 0, 1/2, ... .).
Via f(n), we go from the second fractional Euler numbers to the second Bernoulli numbers.
a(n) mod 10: periodic sequence of length 4: repeat [2, 3, 4, 5].
a(n) differences table:
. 2, 3, 14, 15, 62, 63, 254, 255, ...
. 1, 11, 1, 47, 1, 191, 1, 767, ... see A198693
. 10, -10, 46, -46, 190, -190, 766, -766, ... see A096045, from Bernoulli(2n).
Extension of a(n): a(-2) = -1, a(-1) = 0.
|