login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030990
7-automorphic numbers ending in 3: final digits of 7n^2 agree with n.
1
3, 43, 143, 7143, 57143, 857143, 2857143, 42857143, 142857143, 7142857143, 57142857143, 857142857143, 2857142857143, 42857142857143, 142857142857143, 7142857142857143, 57142857142857143
OFFSET
1,1
COMMENTS
a(n) is the unique positive integer less than 10^n such that 7a(n) - 1 is divisible by 10^n. - Eric M. Schmidt, Aug 18 2012
MATHEMATICA
LinearRecurrence[{11, -10, -1000, 11000, -10000}, {3, 43, 143, 7143, 57143}, 20] (* Harvey P. Dale, Apr 02 2018 *)
PROG
(Sage) [inverse_mod(7, 10^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012
CROSSREFS
Sequence in context: A003525 A042661 A281503 * A306970 A376737 A054698
KEYWORD
nonn,base
STATUS
approved